

Cisco Confidential

Supporting Document - Evaluation
Activities for Network Device cPP
Version: 4.0
Date: 25 November 2025

cPP_ND_v4.0-SD, 25-NOV-2025 2

Acknowledgements
This collaborative Protection Profile (cPP) was developed by the Network Device
international Technical Community (ND iTC) with representatives from industry,
government agencies, Common Criteria Test Laboratories, and members of
academia.

Preface
This is a Supporting Document (SD), intended to complement the Common
Criteria (CC) Version CC:2022, Revision 1 and the associated Common Evaluation
Methodology for Information Technology Security Evaluation (CEM).

Supporting documents may be “Guidance Documents”, that highlight specific
approaches and application of the standard to areas where no mutual recognition
of its application is required, and as such, are not of normative nature, or
“Mandatory Technical Documents”, whose application is mandatory for
evaluations whose scope is covered by that of the supporting document. The
usage of the latter class is not only mandatory, but certificates issued as a result
of their application are recognised under the Common Criteria Recognition
Arrangement (CCRA). This SD shall be considered a Mandatory Technical
Document.

This SD has been developed by the ND iTC, in accordance with [CC4]. The SD is
intended to be used to support the evaluations of products against the
collaborative Protection Profile (cPP) identified in Section 1.1.

Technical Editor: Network Device International Technical Community (ND iTC)

Revision History:

Version Date Description

4.0
25-Nov-
2025

Released for use

cPP_ND_v4.0-SD, 25-NOV-2025 3

Version Date Description

3.0e
06-Dec-
2023

Released for use

3.0
06-Apr-
2023 Incorporated comments received. Released for use

2.2
20-Dec-
2019 Released for use

2.1 17-Aug-
2018

Released for use

2.0
5-May-
2017

Released for use

1.1
21-Jul-
2016 Updated draft published for public review

1.0 27-Feb-
2015

Released for use

0.4 26-Jan-
2015

Incorporated comments received from the CCDB
review

0.3
17-Oct-
2014

Draft version released to accompany CCDB review of
Supporting Document.

cPP_ND_v4.0-SD, 25-NOV-2025 4

Version Date Description

0.2
13-Oct-
2014

Internal draft in response to public review comments,
for iTC review

0.1
05-Sep-
2014 Draft published for public review

General Purpose: See Section 1.1.

Field of special use: This Supporting Document applies to the evaluation of TOEs
claiming conformance with the collaborative Protection Profile for Network
Devices [NDcPP].

cPP_ND_v4.0-SD, 25-NOV-2025 5

Table of Contents

Acknowledgements 2

Preface 2

1. Introduction 7
1.1. Technology Area and Scope of Supporting Document 7
1.2. Structure of the Document 7
1.3. Application of this Supporting Document 8
1.4. Terminology 8

2. Evaluation Activities for SFRs 15
2.1. Security Audit (FAU) 15
2.2. Cryptographic Support (FCS) 22
2.3. Identification and Authentication (FIA) 54
2.4. Security management (FMT) 55
2.5. Protection of the TSF (FPT) 60
2.6. TOE Access (FTA) 66
2.7. Trusted path/channels (FTP) 68

3. Evaluation Activities for Optional Requirements 71
3.1. Security Audit (FAU) 71
3.2. Protection of the TSF (FPT) 74
3.3. Trusted Path/Channels (FTP) 76
3.4. Communication (FCO) 78

4. Evaluation Activities for Selection-Based Requirements 84
4.1. Security Audit (FAU) 84
4.2. Cryptographic Support (FCS) 86
4.3. Identification and Authentication (FIA) 117
4.4. Protection of the TSF (FPT) 121
4.5. Security management (FMT) 123
4.6. TOE Access (FTA) 129

5. Evaluation Activities for SARs 130
5.1. ASE: Security Target Evaluation 130
5.2. ADV: Development 131
5.3. AGD: Guidance Documents 135
5.4. ALC: Life-cycle Support 138
5.5. ATE: Tests 138
5.6. AVA: Vulnerability Assessment 139

6. Required Supplementary Information 145

7. References 146

Annex A: Vulnerability Analysis 148

cPP_ND_v4.0-SD, 25-NOV-2025 6

A.1. Sources of Vulnerability Information 148
A.2. Process for Evaluator Vulnerability Analysis 151
A.3. Reporting 152
A.4. Public Vulnerability Sources 154

Annex B: Network Device Equivalency Considerations 156
B.1. Introduction 156
B.2. Evaluator Guidance for Determining Equivalence 157
B.3. Test Presentation/Truth in Advertising 162
B.4. Evaluating Additional Components for a Distributed TOE 162

cPP_ND_v4.0-SD, 25-NOV-2025 7

1. Introduction
1.1. Technology Area and Scope of Supporting Document

1. This Supporting Document (SD) defines the Evaluation Activities (EA)
associated with the collaborative Protection Profile for Network Devices
[NDcPP].

2. The ND technical area has a number of specialised aspects, such as those
relating to the secure implementation and use of protocols, and to the particular
ways in which remote management facilities need to be assessed across a range
of different physical and logical interfaces for different types of infrastructure
devices. This degree of specialisation, and the associations between individual
Security Functional Requirements (SFRs) in the cPP, make it important for both
efficiency and effectiveness that evaluation activities are given more specific
interpretations than those found in the generic CEM activities.

3. This Supporting Document is mandatory for evaluations of products that claim
conformance to the following cPP:

a. collaborative Protection Profile for Network Devices [NDcPP]

4. Although Evaluation Activities (EAs) are defined mainly for the evaluators to
follow, the definitions in this Supporting Document aim to provide a common
understanding for developers, evaluators and users of the product as to what
aspects of the TOE are tested in an evaluation against the associated cPPs, and
to what depth the testing is carried out. This common understanding in turn
contributes to the goal of ensuring that evaluations against the cPP achieve
comparable, transparent and repeatable results. In general, the definition of
Evaluation Activities will also help Developers to prepare for evaluation by
identifying specific requirements for their TOE. The specific requirements in
Evaluation Activities may in some cases clarify the meaning of SFRs, and may
identify particular requirements for the content of Security Targets (STs)
(especially the TOE Summary Specification (TSS)), Administrator Guidance
Documentation (AGD), and possibly supplementary information (e.g., for
entropy analysis or cryptographic key management architecture – see Section
6).

1.2. Structure of the Document

5. Evaluation Activities can be defined for both SFRs and Security Assurance
Requirements (SARs). These are defined in separate sections of this Supporting
Document.

6. If any Evaluation Activity cannot be successfully completed in an evaluation,
then the overall verdict for the evaluation is a ‘fail’. In rare cases there may be

cPP_ND_v4.0-SD, 25-NOV-2025 8

acceptable reasons why an Evaluation Activity may be modified or deemed not
applicable for a particular TOE, but this must be agreed with the Certification
Body (CB) for the evaluation and documented in the evaluation report.

7. In general, if all Evaluation Activities (for both SFRs and SARs) are successfully
completed in an evaluation then it would be expected that the overall verdict for
the evaluation is a ‘pass’.

8. Similarly, at the more granular level of Assurance Components, if the Evaluation
Activities for an Assurance Component and all of its related SFR Evaluation
Activities are successfully completed in an evaluation then it would be expected
that the verdict for the Assurance Component is a ‘pass’.

1.3. Application of this Supporting Document

9. This Supporting Document defines three types of Evaluation Activities: TOE
Summary Specification, Guidance Documentation, and Tests, and is designed to
be used in conjunction with a cPP. cPPs that rely on this SD will explicitly
identify it as a source for their EAs[1]. Each security requirement (SFR or SAR)
specified in the cPP could have multiple EAs associated with it. The security
requirement naming convention is consistent between the cPP and this SD,
ensuring a clear one to one correspondence between security requirements and
evaluation activities.

10. The cPP and SD are designed to be used in conjunction with each other, where
the cPP lists SFRs and SARs and the SD catalogues EAs associated with each SFR
and SAR. Some of the SFRs included in the cPP are optional or selection-based.
Therefore, an ST claiming conformance to the cPP does not necessarily have to
include all possible SFRs defined in the cPP.

11. In an ST conformant to the cPP, several operations need to be performed
(mainly selections and assignments). Some EAs define separate actions for
different selected or assigned values in SFRs. The evaluator shall neither carry
out EAs related to SFRs that are not claimed in the ST nor EAs related to specific
selected or assigned values that are not claimed in the ST.

12. EAs do not necessarily have to be executed independently from each other. A
description in a guidance documentation or one test case, for example, can
cover multiple EAs at a time, no matter whether the EAs are related to the same
or different SFRs.

1.4. Terminology

1.4.1. Glossary

13. For definitions of standard CC terminology see [CC1].

cPP_ND_v4.0-SD, 25-NOV-2025 9

Term Meaning

Administrator See Security Administrator.

Assurance Grounds for confidence that a TOE meets the
SFRs [CC1].

Security
Administrator

The terms “Administrator”, “Security
Administrator”, and “User” are used
interchangeably in this document at present and
are used to represent a person that has
authorised access to the TOE to perform
configuration and management tasks.

Supplementary
Information

Information that is not necessarily included in
the ST or operational guidance, and that may not
necessarily be public. Examples of such
information could be entropy analysis, or
description of a cryptographic key management
architecture used in (or in support of) the TOE.
The requirement for any such supplementary
information will be identified in the relevant cPP
or PP-Module.

Target of
Evaluation (TOE)

A set of software, firmware and/or hardware
possibly accompanied by guidance. [CC1]

TOE Security
Functionality
(TSF)

A set consisting of all hardware, software, and
firmware of the TOE that must be relied upon for
the correct enforcement of the SFRs. [CC1]

cPP_ND_v4.0-SD, 25-NOV-2025 10

Term Meaning

TSF Data
Data for the operation of the TSF upon which the
enforcement of the requirements relies.

1.4.2. Acronyms

Acronym Meaning

AGD Assurance: Guidance Documents

API Application Programming Interface

CA Certificate Authority

CCM Counter with CBC-MAC

CCRA Common Criteria Recognition Arrangement

CEM
Common Methodology for Information Technology
Security Evaluation

CMAC Cipher-based Message Authentication Code

CN Common Name

cPP collaborative Protection Profile

cPP_ND_v4.0-SD, 25-NOV-2025 11

Acronym Meaning

CRL Certificate Revocation List

CTR Counter (mode)

CVE Common Vulnerabilities and Exposures (database)

DHE Ephemeral Diffie-Hellman Key Exchange

DN Distinguished Name

DNS Domain Name Service

DRBG Deterministic Random Bit Generator

EA Evaluation Activity

EC Elliptic Curve

ECC Elliptic Curve Cryptography

FFC Finite Field Cryptography

FQDN Fully Qualified Domain Name

I&A Identity and Authentication

cPP_ND_v4.0-SD, 25-NOV-2025 12

Acronym Meaning

IKE Internet Key Exchange

iTC International Technical Community

IV Initialization Vector

LMS Leighton-Micali Signature

MAC Message Authentication Code

MD Message Digest

ML-DSA Module-Lattice-Based Digital Signature Algorithm

ML-KEM Module-Lattice-Based Key Encapsulation Mechanism

MODP Modular Exponential (Diffie-Hellman group type)

NIST National Institute of Standards and Technology

OE Operational Environment

OCSP Online Certificate Status Protocol

RBG Random Bit Generator

cPP_ND_v4.0-SD, 25-NOV-2025 13

Acronym Meaning

SA Security Association (IPsec)

SAN Subject Alternative Name

SAR Security Assurance Requirement

SD Supporting Document

SFR Security Functional Requirement

SPD Security Policy Database

SSH Secure Shell

TLS Transport Layer Security

TSF TOE Security Functionality

TSFI TSF Interface

TSS TOE Summary Specification

XMSS eXtended Merkle Signature Scheme

XOF eXtendable Output Function

cPP_ND_v4.0-SD, 25-NOV-2025 14

Acronym Meaning

XTS
XEX-based Tweaked-codebook mode with ciphertext
Stealing

cPP_ND_v4.0-SD, 25-NOV-2025 15

2. Evaluation Activities for SFRs
14. The EAs presented in this section capture the actions the evaluator shall

perform to address technology specific aspects covering specific SARs (e.g.,
ASE_TSS.1, ADV_FSP.1, AGD_OPE.1, and ATE_IND.1) – this is in addition to the
CEM work units that are performed in Section 5 (Evaluation Activities for SARs).

15. Regarding design descriptions (designated by the subsections labelled TOE
Summary Specification (TSS), as well as any required supplementary material
that may be treated as proprietary), the evaluator must ensure there is specific
information that satisfies the EA. For findings regarding the TSS section, the
evaluator’s verdicts will be associated with the CEM work unit ASE_TSS.1-1.
Evaluator verdicts associated with the supplementary evidence will also be
associated with ASE_TSS.1-1, since the requirement to provide such evidence is
specified in ASE in the cPP.

16. For ensuring the guidance documentation provides sufficient information for
the Security Administrators as it pertains to SFRs, the evaluator’s verdicts will
be associated with CEM work units AGD_OPE.1-4 and AGD_OPE.1-5.

17. Finally, the subsection labelled Tests is where the iTC has determined that
testing of the product in the context of the associated SFR is necessary. While
the evaluator is expected to develop tests, there may be instances where it is
more practical for the developer to construct tests, or where the developer may
have existing tests. Approval for using tests created by developers is up to the
CB. The CEM work units that are associated with the EAs specified in this
section are: ATE_IND.1-3, ATE_IND.1-4, ATE_IND.1-5, ATE_IND.1-6, and
ATE_IND.1-7.

Additional Note for Distributed TOEs

18. For a distributed TOE, all examination of Operational Guidance information
should be extended to include confirmation that it defines sufficient information
to configure individual components such that the overall TOE is correctly
established.

19. Evaluation activities for SFRs must be carried out for all distributed TOE
components that implement the SFR (as defined in the mapping of SFRs to
components, see Section 5.1.2). This applies to optional and selection-based
SFRs in Section 3 and 4 as well as to the core SFRs in this section.

2.1. Security Audit (FAU)

2.1.1. FAU_GEN.1 Audit data generation

cPP_ND_v4.0-SD, 25-NOV-2025 16

20. The main reasons for collecting audit information are to detect and identify
error conditions, security violations, etc. and to provide sufficient information to
the Security Administrator to resolve the issue. The audit information to be
collected according to FAU_GEN.1, and the failure conditions identified in tables
2, 11, and 12 need to enable the Security Administrator at least to detect and
identify the problem and provide at least basic information to resolve the issue.
Also for this level of detail, the other FAU requirements apply, in particular the
need for local and remote storage of audit information according to
FAU_STG_EXT.1.

21. The level of detail that needs to be provided to the Security Administrator to
actually resolve an issue usually depends on the complexity of the underlying
use case. It is expected that a product provides additional levels of auditing to
support resolution of error conditions, security violations, etc. beyond the level
required by FAU_GEN.1, but it should also be clear that a high level of
granularity cannot be maintained on most systems by default due to the high
number of audit events that would be generated in such a configuration. It is
expected that the TOE will be capable of auditing sufficient information to meet
the requirements of FAU_GEN.1. If the TOE allows configuration of the level of
auditing without taking the TOE out of the evaluated configuration, some of the
audit events required by FAU_GEN.1 may only be recorded after corresponding
configuration of the audit functionality.

22. The issue described above explicitly refers to the use of X.509v3 certificates. In
the case that a certificate-based authentication fails, an error message telling the
Security Administrator that ‘something is wrong with the certificate’ shall not be
considered as sufficient information about the ‘reason for failure’ as a basic
information to resolve the issue. The log message will inform the Security
Administrator of at least the following:

o ‘Trust issue’ with the certificate, e.g., due to failed path validation

o Use of an ‘expired certificate’

o Absence of the basicConstraints extension

o The CA flag is not set for a certificate presented as a CA

o Signature validation failure for any certificate in the certificate path;
failure to establish revocation status; revoked certificate

23. As such for audit information related to the use of X.509v3 certificates, that it
uniquely identifies the certificate that could not be successfully verified. For
example, identification of a certificate could include Key Subject and Key ID
(where Key Subject is an identifier contained in the CN or SAN and where Key ID
is a certificate’s serial number and issuer name) or Subject Key Identifier (SKI)
and Authority Key Identifier (AKI). In general, when using open source libraries
like OpenSSL, passing on error messages from such libraries to the Security
Administrator is regarded as good practice.

cPP_ND_v4.0-SD, 25-NOV-2025 17

2.1.1.1. TSS

24. For the administrative task of generating/import of, changing, or deleting of
cryptographic keys as defined in FAU_GEN.1.1c, the TSS shall identify what
information is logged to identify the relevant key.

25. For distributed TOEs, the evaluator shall examine the TSS to ensure that it
describes which of the overall required auditable events defined in FAU_GEN.1.1
are generated and recorded by which TOE components. The evaluator shall
ensure that this mapping of audit events to TOE components accounts for, and is
consistent with, information provided in Table 1, as well as events in Tables 2,
11, and 12 (where applicable to the overall TOE). This includes that the
evaluator shall confirm that all components defined as generating audit
information for a particular SFR should also contribute to that SFR as defined in
the mapping of SFRs to TOE components, and that the audit records generated
by each component cover all the SFRs that it implements.

2.1.1.2. Guidance Documentation

26. The evaluator shall check the guidance documentation and ensure that it
provides an example of each auditable event required by FAU_GEN.1 (i.e., at
least one instance of each auditable event, comprising the mandatory, optional
and selection-based SFR sections as applicable, shall be provided from the
actual audit record).

27. The evaluator shall also make a determination of the administrative actions
related to TSF data related to configuration changes. The evaluator shall
examine the guidance documentation and make a determination of which
administrative commands, including subcommands, scripts, and configuration
files, are related to the configuration (including enabling or disabling) of the
mechanisms implemented in the TOE that are necessary to enforce the
requirements specified in the cPP. The evaluator shall document the
methodology or approach taken while determining which actions in the
administrative guide are related to TSF data related to configuration changes.
The evaluator may perform this activity as part of the activities associated with
ensuring that the corresponding guidance documentation satisfies the
requirements related to it.

2.1.1.3. Tests

28. The evaluator shall test the TOE’s ability to correctly generate audit records by
having the TOE generate audit records for the events listed in the table of audit
events and the administrative actions listed above. This should include all
instances of an event; for instance, if there are several different Identity and
Authentication (I&A) mechanisms for a system, the FIA_UIA_EXT.1 events must
be generated for each mechanism. The evaluator shall test that audit records are

cPP_ND_v4.0-SD, 25-NOV-2025 18

generated for the establishment and termination of a channel for each of the
cryptographic protocols contained in the ST. If HTTPS is implemented, the test
demonstrating the establishment and termination of a TLS session can be
combined with the test for an HTTPS session. When verifying the test results,
the evaluator shall ensure the audit records generated during testing match the
format specified in the guidance documentation, and that the fields in each audit
record have the proper entries.

29. For distributed TOEs, the evaluator shall perform tests on all TOE components
according to the mapping of auditable events to TOE components in the Security
Target. For all events involving more than one TOE component when an audit
event is triggered, the evaluator has to check that the event has been audited on
both sides (e.g., failure of building up a secure communication channel between
the two components). This is not limited to error cases but includes also events
about successful actions like successful build up/tear down of a secure
communication channel between TOE components.

30. Note that the testing here can be accomplished in conjunction with the testing of
the security mechanisms directly.

2.1.2. FAU_GEN.2 User identity association

2.1.2.1. TSS and Guidance Documentation

31. The TSS and Guidance Documentation requirements for FAU_GEN.2 are already
covered by the TSS and Guidance Documentation requirements for FAU_GEN.1.

2.1.2.2. Tests

32. This activity should be accomplished in conjunction with the testing of
FAU_GEN.1.1.

33. For distributed TOEs, the evaluator shall verify that where auditable events are
instigated by another component, the component that records the event
associates the event with the identity of the instigator. The evaluator shall
perform at least one test on one component where another component
instigates an auditable event. The evaluator shall verify that the event is
recorded by the component as expected and the event is associated with the
instigating component. It is assumed that an event instigated by another
component can at least be generated for building up a secure channel between
two TOE components. If for some reason (could be e.g., TSS or Guidance
Documentation) the evaluator would come to the conclusion that the overall
TOE does not generate any events instigated by other components, then this
requirement shall be omitted.

2.1.3. FAU_STG_EXT.1 Protected audit event storage

cPP_ND_v4.0-SD, 25-NOV-2025 19

2.1.3.1. TSS

34. The evaluator shall examine the TSS to ensure it describes the means by which
the audit data are transferred to the external audit server, and how the trusted
channel is provided.

35. The evaluator shall examine the TSS to ensure it describes whether the TOE is a
standalone TOE that stores audit data locally or a distributed TOE that stores
audit data locally on each TOE component or a distributed TOE that contains
TOE components that cannot store audit data locally on themselves but need to
transfer audit data to other TOE components that can store audit data locally.
The evaluator shall examine the TSS to ensure that for distributed TOEs it
contains a list of TOE components that store audit data locally. The evaluator
shall examine the TSS to ensure that for distributed TOEs that contain
components which do not store audit data locally but transmit their generated
audit data to other components it contains a mapping between the transmitting
and storing TOE components.

36. The evaluator shall examine the TSS to ensure that it details whether the
transmission of audit data to an external IT entity can be done in real-time,
periodically, or both. In the case where the TOE is capable of performing
transmission periodically, the evaluator shall verify that the TSS provides
details about what event stimulates the transmission to be made as well as the
possible acceptable frequency for the transfer of audit data.

37. For distributed TOEs, the evaluator shall examine the TSS to ensure it describes
to which TOE components this SFR applies and how audit data transfer to the
external audit server is implemented among the different TOE components (e.g.,
every TOE component does its own transfer or the data is sent to another TOE
component for central transfer of all audit events to the external audit server).

38. The evaluator shall examine the TSS to ensure it describes the amount of audit
data that can be stored locally and how these records are protected against
unauthorised modification or deletion.

39. The evaluator shall examine the TSS to ensure it describes the method
implemented for local logging, including format (e.g., buffer, log file, database)
and whether the logs are persistent or non-persistent.

40. The evaluator shall examine the TSS to ensure it describes the conditions that
must be met for authorised deletion of audit records.

41. The evaluator shall examine the TSS to ensure it details the behaviour of the
TOE when the storage space for audit data is full. When the option ‘overwrite
previous audit record’ is selected this description should include an outline of
the rule for overwriting audit data. If ‘other actions’ are chosen such as sending
the new audit data to an external IT entity, then the related behaviour of the
TOE shall also be detailed in the TSS.

cPP_ND_v4.0-SD, 25-NOV-2025 20

42. For distributed TOEs, the evaluator shall examine the TSS to ensure it describes
which TOE components are storing audit information locally and which
components are buffering audit information and forwarding the information to
another TOE component for local storage. For every component the TSS shall
describe the behaviour when local storage space or buffer space is exhausted.

2.1.3.2. Guidance Documentation

43. The evaluator shall also examine the guidance documentation to ensure it
describes how to establish the trusted channel to the audit server, as well as
describe any requirements on the audit server (particular audit server protocol,
version of the protocol required, etc.), as well as configuration of the TOE
needed to communicate with the audit server.

44. The evaluator shall also examine the guidance documentation to ensure it
describes the relationship between the local audit data and the audit data that
are sent to the audit log server. For example, when an audit event is generated,
is it simultaneously sent to the external server and the local store, or is the local
store used as a buffer and “cleared” periodically by sending the data to the audit
server.

45. The evaluator shall examine the guidance documentation to ensure it describes
any configuration required for protection of the locally stored audit data against
unauthorised modification or deletion.

46. If the storage size is configurable, the evaluator shall review the Guidance
Documentation to ensure it contains instructions on specifying the required
parameters.

47. If more than one selection is made for FAU_STG_EXT.1.5, the evaluator shall
review the Guidance Documentation to ensure it contains instructions on
specifying which action is performed when the local storage space is full.

2.1.3.3. Tests

48. Testing of secure transmission of the audit data externally (FTP_ITC.1) and,
where applicable, intercomponent (FPT_ITT.1 or FTP_ITC.1) shall be performed
according to the assurance activities for the particular protocol(s).

49. The evaluator shall perform the following additional test for this requirement:

a. Test 1: The evaluator shall establish a session between the TOE and
the audit server according to the configuration guidance provided.
The evaluator shall then examine the traffic that passes between the
audit server and the TOE during several activities of the evaluator’s
choice designed to generate audit data to be transferred to the audit
server. The evaluator shall observe that these data are not able to be
viewed in the clear during this transfer, and that they are successfully

cPP_ND_v4.0-SD, 25-NOV-2025 21

received by the audit server. The evaluator shall record the particular
software (name, version) used on the audit server during testing. The
evaluator shall verify that the TOE is capable of transferring audit data
to an external audit server automatically without administrator
intervention.

b. Test 2: For distributed TOEs, Test 1 defined above shall be applicable
to all TOE components that forward audit data to an external audit
server.

c. Test 3: The evaluator shall perform operations that generate audit
data and verify that this data is stored locally. The evaluator shall then
make note of whether the TSS claims persistent or non-persistent
logging and perform one of the following actions:

i. If persistent logging is selected, the evaluator shall perform
a power cycle of the TOE and ensure that following power
on operations the log events generated are still maintained
within the local audit storage.

ii. If non-persistent logging is selected, the evaluator shall
perform a power cycle of the TOE and ensure that following
power on operations the log events generated are no longer
present within the local audit storage.

d. Test 4: The evaluator shall perform operations that generate audit
data until the local storage space is exceeded and verifies that the TOE
complies with the behaviour defined in FAU_STG_EXT.1.5. Depending
on the configuration this means that the evaluator shall check the
content of the audit data when the audit data is just filled to the
maximum and then verifies that:

i. The audit data remains unchanged with every new
auditable event that should be tracked but that the audit
data is recorded again after the local storage for audit data
is cleared (for the option ‘drop new audit data’ in
FAU_STG_EXT.1.5).

ii. The existing audit data is overwritten with every new
auditable event that should be tracked according to the
specified rule (for the option ‘overwrite previous audit
records’ in FAU_STG_EXT.1.5)

iii. The TOE behaves as specified (for the option ‘other action’
in FAU_STG_EXT.1.5).

e. Test 5: For distributed TOEs, for the local storage according to
FAU_STG_EXT.1.4, Test 1 specified above shall be applied to all TOE
components that store audit data locally. For all TOE components that
store audit data locally and comply with FAU_STG_EXT.2, Test 2

cPP_ND_v4.0-SD, 25-NOV-2025 22

specified above shall be applied. The evaluator shall verify that the
transfer of audit data to an external audit server is implemented.

f. Test 6 [Conditional]: In case manual export or ability to view locally is
selected in FAU_STG_EXT.1.6, during interruption the evaluator shall
perform a TSF-mediated action and verify the event is recorded in the
audit trail.

Note: The intent of the test is to ensure that the local audit TSF (as
specified by FAU_STG_EXT.1.3) operates independently from the
ability to transmit the generated audit data to an external audit server
(as specified in FAU_STG_EXT.1.1). There are no specific requirements
on the interruption of the connection between the TOE and the
external audit server (as for FTP_ITC.1).

2.2. Cryptographic Support (FCS)

2.2.1. FCS_CKM.1/AKG Cryptographic Key Generation – Asymmetric
Key

2.2.1.1. TSS

50. The evaluator shall examine the TSS to verify that it describes how the TOE
generates a key based on output from a random bit generator as specified in
FCS_RBG.1. The evaluator shall review the TSS to verify that it describes how
the functionality described by FCS_RBG.1 is invoked.

51. The evaluator shall examine the TSS to verify that it identifies the usage and key
lifecycle for keys generated using each selected algorithm.

52. The evaluator shall examine the TSS to verify that any one-time values such as
nonces or masks are constructed in accordance with the relevant standards.

53. If the TOE uses the generated key in a key chain or hierarchy then the evaluator
shall verify that the TSS describes how the key is used as part of the key chain or
hierarchy.

2.2.1.2. Guidance Documentation

54. The evaluator shall verify that the Guidance instructs the administrator how to
configure the TOE to generate keys for the selected key generation algorithms
for all key types and uses identified in the TSS.

2.2.1.3. Tests

cPP_ND_v4.0-SD, 25-NOV-2025 23

55. The following tests are conditional based on the selections made in the SFR. The
evaluator shall perform the following tests or witness respective tests executed
by the developer. The tests must be executed on a platform that is as close as
practically possible to the operational platform (but which may be
instrumented in terms of, for example, use of a debug mode). Where the test is
not carried out on the TOE itself, the test platform shall be identified and the
differences between test environment and TOE execution environment shall be
described.

RSA Key Generation

56. FIPS PUB 186-5 Key Pair generation specifies five methods for generating the
primes p and q. These are:

a. Random provable primes

b. Random probable primes

c. Provable primes with conditions based on auxiliary provable primes

d. Probable primes with conditions based on auxiliary provable primes

e. Probable primes with conditions based on auxiliary probable primes

In addition to the key generation method, the input parameters are:

• Modulus [3072, 4096, 6144, 8192]

• Hash algorithm [SHA-384, SHA-512] (methods 1, 3, 4 only)

• Rabin-Miller prime test [2100, 2Security String] (methods 2, 4, 5 only)

• p mod 8 value [0,1,3,5,7]

• q mod 8 value [0,1,3,5,7]

• Private key format [standard, Chinese Remainder Theorem]

• Public exponent [fixed value, random]

The evaluator shall verify the ability of the TSF to correctly produce values for
the RSA key components, including the public verification exponent e, the private
prime factors p and q, the public modulus n, and the calculation of the private
signature exponent d.

Testing for Random Provable Primes and Conditional Methods

57. To test the key generation method for the random provable primes method and
for all the primes with conditions methods (methods 1, 3-5), the evaluator must

cPP_ND_v4.0-SD, 25-NOV-2025 24

seed the TSF key generation routine with sufficient data to deterministically
generate the RSA key pair. For each supported combination of the above input
parameters, the evaluator shall have the TSF generate 25 key pairs. The
evaluator shall verify the correctness of the TSF’s implementation by comparing
values generated by the TSF with those generated by a known good
implementation using the same input parameters.

Testing for Random Probable Primes Method

58. If the TOE generates random probable primes (method 2) then, if possible, the
random probable primes method should also be verified against a known good
implementation as described above. If verification against a known good
implementation is not possible, the evaluator shall have the TSF generate 25 key
pairs for each supported key length nlen and verify that all of the following are
true.

• n = p*q

• p and q are probably prime according to Miller-Rabin tests with error
probability <2(-125)

• 216 < e < 2256 and e is an odd integer

• GCD(p-1,e) = 1

• GCD(q-1,e) = 1

• |p-q| > 2(nlen/2 – 100)

• p ≥ squareroot(2)*(2(nlen/2 -1))

• q ≥ squareroot(2)*(2(nlen/2 -1))

• 2(nlen/2) < d < LCM(p-1,q-1)

• e*d = 1 mod LCM(p-1,q-1)

Elliptic Curve Key Generation

59. To test the TOE’s ability to generate asymmetric cryptographic keys using
elliptic curves, the evaluator shall perform the ECC Key Generation Test and the
ECC Key Validation Test using the following input parameters:

a. Elliptic curve [P-256, P-384, P-521]

b. Key pair generation method [extra random bits, rejection sampling]

ECC Key Generation Test

cPP_ND_v4.0-SD, 25-NOV-2025 25

60. For each supported combination of the above input parameters the evaluator
shall require the implementation under test to generate 10 private/public key
pairs (d, Q). The private key, d, shall be generated using a random bit generator
as specified in FCS_RBG.1. The private key, d, is used to compute the public key,
Q’. The evaluator shall confirm that 0<d<n (where n is the order of the group),
and the computed value Q’ is then compared to the generated public/private
key pairs’ public key, Q, to confirm that Q is equal to Q’.

ECC Key Validation Test

61. For each supported combination of the above parameters the evaluator shall
generate 12 private/public key pairs using the key generation function of a
known-good implementation. For each set of 12 public keys, the evaluator shall
modify four public key values by shifting x or y out of range by adding the order
of the field and modify four other public key values by shifting x or y so that they
are still in bounds, but not on the curve. The remaining public key values are left
unchanged (i.e., correct). To determine correctness, the evaluator shall submit
the public keys to the public key validation (PKV) function of the TOE and shall
confirm that the results correspond as expected for the modified and
unmodified values.

Finite Field Cryptography Key Generation

62. To test the TOE’s ability to generate asymmetric cryptographic keys using finite
fields, the evaluator shall perform the Safe Primes Generation Test and the Safe
Primes Validation Test using the following input parameter:

a. Fields/Groups [MODP-3072, MODP-4096, MODP-6144, MODP-8192,
ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192]

Safe Primes Generation Test

63. For each supported safe primes group, generate 10 key pairs. The evaluator
shall verify the correctness of the TSF’s implementation by comparing values
generated by the TSF with those generated by a known good implementation
using the same input parameters.

Safe Primes Validation Test

64. For each supported safe primes group, use a known good implementation to
generate 10 key pairs. For each set of 10, the evaluator shall modify three such
that they are incorrect. The remaining values are left unmodified (i.e. correct).
To determine correctness, the evaluator shall submit the key pairs to the public
key validation (PKV) function of the TOE and shall confirm that the results
correspond as expected for the modified and unmodified values.

cPP_ND_v4.0-SD, 25-NOV-2025 26

LMS Key Generation

65. To test the TOE’s ability to generate asymmetric cryptographic keys using LMS,
the evaluator shall perform the LMS Key Generation Test using the following
input parameters:

a. Hash algorithm [SHA-256/192, SHAKE256/192, SHA-256,
SHAKE256]

b. Winternitz [1, 2, 4, 8]

c. Tree height [5, 10, 15, 20, 25]

LMS Key Generation Test

66. For each supported combination of the hash algorithm, Winternitz parameter,
and tree height, the evaluator shall generate one public key for each of the test
cases. The number of test cases depends on the tree height.

Height Number of test cases

5 5

10 4

15 3

20 2

25 1

The evaluator shall verify the correctness of the TSF’s implementation by
comparing the public key generated by the TSF with that generated by a known
good implementation using the same input parameters.

ML-KEM Key Generation

cPP_ND_v4.0-SD, 25-NOV-2025 27

67. To test the TOE’s ability to generate asymmetric cryptographic keys using ML-
KEM, the evaluator shall perform the Algorithm Functional Test using the
following input parameters:

o Parameter set [ML-KEM-1024]

o Random seed d [32 bytes]

o Random seed z [32 bytes]

Algorithm Functional Test

68. For each supported parameter set the evaluator shall require the
implementation under test to generate 25 key pairs using 25 different randomly
generated pairs of 32-byte seed values (d, z). To determine correctness, the
evaluator shall compare the resulting key pairs (ek, dk) with those generated
using a known-good implementation using the same inputs.

ML-DSA Key Generation

69. To test the TOE’s ability to generate asymmetric cryptographic keys using ML-
DSA, the evaluator shall perform the Algorithm Functional Test using the
following input parameters:

o Parameter set [ML-DSA-87]

o Random seed [32 bytes]

Algorithm Functional Test

For each supported parameter set the evaluator shall require the implementation
under test to generate 25 key pairs using 25 different randomly generated 32-byte
seed values. To determine correctness, the evaluator shall compare the resulting
key pairs with those generated using a known-good implementation using the
same inputs.

XMSS Key Generation

70. To test the TOE’s ability to generate asymmetric cryptographic keys using XMSS,
the evaluator shall perform the XMSS Key Generation Test using the following
input parameters:

o Hash algorithm [SHA-256/192, SHAKE256/192, SHA-256,
SHAKE256]

o Tree height [10, 16, 20] (XMSS only)

cPP_ND_v4.0-SD, 25-NOV-2025 28

Height Number of test cases

10 5

16 4

20 3

40 2

60 1

XMSS Key Generation Test

For each supported combination of hash algorithm and tree height, the evaluator
shall generate one public key for each test case. The number of test cases depends
on the tree height as specified in the table above.

The evaluator shall verify the correctness of the TSF’s implementation by
comparing values generated by the TSF with those generated by a known good
implementation using the same input parameters.

Note: The number of test cases is limited due to the extreme amount of time it can
take to generate XMSS trees.

2.2.2. FCS_CKM.6 Timing and Event of Cryptographic Key
Destruction

2.2.2.1. TSS

71. The evaluator shall examine the TSS to ensure it lists all relevant keys
(describing the origin and storage location of each), all relevant key destruction
situations (e.g., factory reset or device wipe function, disconnection of trusted
channels, key change as part of a secure channel protocol), and the destruction
method used in each case. For the purpose of this Evaluation Activity the

cPP_ND_v4.0-SD, 25-NOV-2025 29

relevant keys are those keys that are relied upon to support any of the SFRs in
the Security Target. The evaluator shall confirm that the description of keys and
storage locations is consistent with the functions carried out by the TOE (e.g.,
that all keys for the TOE-specific secure channels and protocols, or that support
FPT_APW.EXT.1 and FPT_SKP_EXT.1, are accounted for[2]). In particular, if a TOE
claims not to store plaintext keys in non-volatile memory then the evaluator
shall check that this is consistent with the operation of the TOE.

72. The evaluator shall check to ensure the TSS identifies how the TOE destroys
keys stored as plaintext in non-volatile memory, and that the description
includes identification and description of the interfaces that the TOE uses to
destroy keys (e.g., file system APIs, key store APIs).

73. Note that where selections involve ‘destruction of reference’ (for volatile
memory) or ‘invocation of an interface’ (for non-volatile memory) then the
relevant interface definition is examined by the evaluator to ensure that the
interface supports the selection(s) and description in the TSS. In the case of non-
volatile memory, the evaluator includes in their examination the relevant
interface description for each media type on which plaintext keys are stored.
The presence of OS-level and storage device-level swap and cache files is not
examined in the current version of the Evaluation Activity.

74. Where the TSS identifies keys that are stored in a non-plaintext form, the
evaluator shall check that the TSS identifies the encryption method and the key-
encrypting-key used, and that the key-encrypting-key is either itself stored in an
encrypted form or that it is destroyed by a method included under FCS_CKM.6.

75. The evaluator shall check that the TSS identifies any configurations or
circumstances that may not conform to the key destruction requirement (see
further discussion in the Guidance Documentation section below). Note that
reference may be made to the Guidance Documentation for description of the
detail of such cases where destruction may be prevented or delayed.

76. Where the ST specifies the use of “a static or dynamic value that does not
contain any CSP” to overwrite keys, the evaluator shall examine the TSS to
ensure that it describes how that pattern is obtained and used, and that this
justifies the claim that the pattern does not contain any CSPs.

2.2.2.2. Guidance Documentation

77. A TOE may be subject to situations that could prevent or delay key destruction
in some cases. The evaluator shall check that the guidance documentation
identifies configurations or circumstances that may not strictly conform to the
key destruction requirement, and that this description is consistent with the
relevant parts of the TSS (and any other supporting information used). The
evaluator shall check that the guidance documentation provides guidance on
situations where key destruction may be delayed at the physical layer.

cPP_ND_v4.0-SD, 25-NOV-2025 30

78. For example, when the TOE does not have full access to the physical memory, it
is possible that the storage may be implementing wear-levelling and garbage
collection. This may result in additional copies of the key that are logically
inaccessible but persist physically. Where available, the TOE might then
describe use of the TRIM command[3] and garbage collection to destroy these
persistent copies upon their deletion (this would be explained in the TSS and
Operational Guidance).

2.2.2.3. Tests

79. None

2.2.3. FCS_CKM_EXT.7 Cryptographic Key Agreement

2.2.3.1. TSS

80. The evaluator shall ensure that the TSS documents that the security strength of
the material contributed by the TOE is sufficient for the security strength of the
key and the agreement method.

81. The intent of this activity is to be able to identify the scheme being used by each
service. This would mean, for example, one way to document scheme usage
could be as shown in the table below. The information provided in this example
does not necessarily have to be included as a table but can be presented in other
ways as long as the necessary data is available. The relevant SFR citation may
come from a functional package if the TOE boundary includes any functional
packages that define uses of key establishment schemes. For example,
FCS_TLSS_EXT.1 is referenced below, which would be appropriate if the TOE
includes that SFR claim as part of conformance to the Functional Package for
TLS.

Scheme SFR Service

RSA FCS_TLSS_EXT.1 Administration

ECDH FCS_IPSEC_EXT.1
Authentication
Server

2.2.3.2. Guidance Documentation

cPP_ND_v4.0-SD, 25-NOV-2025 31

82. The evaluator shall verify that the AGD guidance instructs the administrator
how to configure the TOE to use the selected key agreement method(s).

2.2.3.3. Tests

83. The following tests are conditional based upon the selections made in the SFR.
The evaluator shall perform the following test or witness respective tests
executed by the developer. The tests must be executed on a platform that is as
close as practically possible to the operational platform (but which may be
instrumented in terms of, for example, use of a debug mode). Where the test is
not carried out on the TOE itself, the test platform shall be identified and the
differences between test environment and TOE execution environment shall be
described.

FFC Diffie-Hellman Key Agreement

84. To test the TOE’s implementation of FFC Diffie-Hellman Key Agreement, the
evaluator shall perform the Algorithm Functional Test and Validation Test using
the following input parameters:

o Domain Parameter Group [MODP-2048, MODP-3072, MODP-4096,
MODP-6144, MODP-8192, ffdhe3072, ffdhe4096, ffdhe6144,
ffdhe8192]

Algorithm Functional Test

85. For each supported domain parameter group, the evaluator shall generate 10
test cases by generating the initiator and responder secret keys using random
data, calculating the responder public key, and creating the shared secret. The
resulting shared secrets shall be compared with those generated by a known-
good implementation using the same inputs.

Validation Test

86. For each supported combination of the above parameters the evaluator shall
generate 15 Diffie Hellman initiator/responder key pairs using the key
generation function of a known-good implementation. For each set of key pairs,
the evaluator shall modify five initiator private key values. The remaining key
values are left unchanged (i.e., correct). To determine correctness, the evaluator
shall confirm that the 15 shared secrets correspond as expected for both the
modified and unmodified inputs.

Elliptic Curve Diffie-Hellman Key Agreement

cPP_ND_v4.0-SD, 25-NOV-2025 32

87. To test the TOE’s implementation of Elliptic Curve Diffie-Hellman Key
Agreement, the evaluator shall perform the Algorithm Functional Test and
Validation Test using the following input parameters:

o Elliptic Curve [P-256, P-384, P-521]

Algorithm Functional Test

88. For each supported Elliptic Curve the evaluator shall generate 10 test cases by
generating the initiator and responder secret keys using random data,
calculating the responder public key, and creating the shared secret. The
resulting shared secrets shall be compared with those generated by a known-
good implementation using the same inputs.

Validation Test

89. For each supported Elliptic Curve the evaluator shall generate 15 Diffie Hellman
initiator/responder key pairs using the key generation function of a known-
good implementation. For each set of key pairs, the evaluator shall modify five
initiator private key values. The remaining key values are left unchanged (i.e.,
correct). To determine correctness, the evaluator shall confirm that the 15
shared secrets correspond as expected for the modified and unmodified values.

2.2.4. FCS_COP.1/DataEncryption Cryptographic Operation (AES Data
Encryption/Decryption)

2.2.4.1. TSS

90. The evaluator shall examine the TSS to ensure it identifies the mode or modes in
which AES operates.

2.2.4.2. Guidance Documentation

91. There are no additional Guidance evaluation activities for this component.

2.2.4.3. Tests

92. There are no additional Test evaluation activities for this component.

2.2.5. FCS_COP.1/SigGen Cryptographic Operation - Signature
Generation

2.2.5.1. TSS

cPP_ND_v4.0-SD, 25-NOV-2025 33

93. The evaluator shall examine the TSS and verify that any hash function is the
appropriate security strength for the signing algorithm.

94. The evaluator shall examine the TSS to verify that any one-time values such as
nonces or masks are constructed and used in accordance with the relevant
standards.

95. The evaluator shall examine the TSS to verify that the TOE has appropriate
measures in place to ensure that hash-based signature algorithms do not reuse
private keys.

96. The evaluator shall examine the TSS to determine that it specifies the
cryptographic algorithm(s) and key size(s) supported by the TOE for signature
generation services.

2.2.5.2. Guidance Documentation

97. There are no additional Guidance evaluation activities for this component.

2.2.5.3. Tests

98. The following tests are conditional based upon the selections made in the SFR.
The evaluator shall perform the following test or witness respective tests
executed by the developer. The tests must be executed on a platform that is as
close as practically possible to the operational platform (but which may be
instrumented in terms of, for example, use of a debug mode). Where the test is
not carried out on the TOE itself, the test platform shall be identified and the
differences between test environment and TOE execution environment shall be
described.

RSA-PKCS Signature Generation

99. To test the TOE’s ability to perform RSA Digital Signature Generation using
PKCS1-v1,5 signature type, the evaluator shall perform the Generated Data Test
using the following input parameters:

o Modulus size [2048, 3072, 4096, 6144, 8192] bits

o Hash algorithm [SHA-256, SHA-384, SHA-512]

Generated Data Test

100. For each supported combination of the above parameters, the evaluator shall
cause the TOE to generate three test cases using random data. The evaluator
shall compare the results against those from a known-good implementation.

RSA-PSS Signature Generation

cPP_ND_v4.0-SD, 25-NOV-2025 34

101. To test the TOE’s ability to perform RSA Digital Signature Generation using
PSS signature type, the evaluator shall perform the Generated Data Test using
the following input parameters:

o Modulus size [2048, 3072, 4096, 6144, 8192] bits

o Hash algorithm [SHA-256, SHA-384, SHA-512]

o Salt length [Fixed based on implementation]

o Mask function [MGF1]

Generated Data Test

102. For each supported combination of the above parameters, the evaluator shall
cause the TOE to generate three test cases using random data. The evaluator
shall compare the results against those from a known-good implementation.

ECDSA Signature Generation

103. To test the TOE’s ability to perform ECDSA Digital Signature Generation using
extra random bits or rejection sampling for secret number generation, the
evaluator shall perform the Algorithm Functional Test using the following input
parameters:

o Elliptic Curve [P-256, P-384, P-521]

o Hash algorithm [SHA-256, SHA-384, SHA-512]

104. To test the TOE’s ability to perform ECDSA Digital Signature Generation using
deterministic secret number generation, the evaluator shall perform the
Algorithm Functional Test using the following input parameters:

o Elliptic Curve [P-256, P-384, P-521]

o Hash algorithm [SHA-256, SHA-384, SHA-512]

Algorithm Functional Test

105. For each supported combination of the above parameters, the evaluator shall
cause the TOE to generate 10 test cases using random data. The evaluator shall
compare the results against those from a known-good implementation.

LMS Signature Generation

106. To test the TOE’s ability to generate cryptographic digital signature using
LMS, the evaluator shall perform the Algorithm Functional Test using the
following input parameters:

cPP_ND_v4.0-SD, 25-NOV-2025 35

o Hash algorithm [SHA-256/192, SHAKE256/192, SHA-256,
SHAKE256]

o Winternitz [1, 2, 4, 8]

o Tree height [5, 10, 15, 20, 25]

Algorithm Functional Test

107. For each supported combination of the above parameters, the evaluator shall
generate 10 signatures. The evaluator shall verify the correctness of the
implementation by comparing values generated by the TOE with those
generated by a known good implementation using the same input parameters.

ML-DSA Signature Generation

108. To test the TOE’s ability to generate digital signatures using ML-DSA, the
evaluator shall perform the Algorithm Functional Test using the following input
parameters:

o Parameter set [ML-DSA-87]

o Seed [32 random bytes] (for non-deterministic signature testing), or

o Seed [32 zero bytes] (for deterministic signature testing)

o Message to sign [8-65535] bytes

o Mu value (if generated externally)

o Previously generated private key (sk)

o Context (for external interface testing)

Algorithm Functional Test

109. For each combination of supported parameter set and capabilities, the
evaluator shall require the implementation under test to generate 15 signatures
pairs using 15 different randomly generated 32-byte seed values. To determine
correctness, the evaluator shall compare the resulting key pairs with those
generated using a known-good implementation using the same inputs.

Known Answer Test for Rejection Cases

110. For each supported parameter set, the evaluator shall cause the TOE to
generate signatures using the data below and a deterministic seed of all 0’s.
Correctness is determined by comparing the hash of the resulting signature
with the hash in the fourth row for each corresponding test case below.

cPP_ND_v4.0-SD, 25-NOV-2025 36

The test values are defined as follows: * Seed is the seed to generate the key pair
(pk, sk) * Hash of keys is computed by SHA-256(pk||sk) * Message is the message
to be signed * Hash of sig is computed by SHA-256(sig)

ML-DSA-87 Test Cases for Rejection Cases

Test case 87-RC-01

Seed:

 E4F5AFCF697E0EC3C1BDEB66FAA903221E803902F9C3F716E1056A63D77DC25

0

Hash of Keys:

 61618E8DDA6998072C8EB36974E03880D741CAF0BD523356DFC161E7C9E6393

4

Message:

 F4F1C05004D5B946F69EAFE104C4020519086ADDB9582A20FDE887D13DFC36

B1

Hash of sig:

 B584E38FA442FC3C81A147D4BDBF058D73C822CAF5CA4C06B0110867F60A80

01

Test case 87-RC-02

Seed:

 8B828D871254D6C57384A8E7025AA3F7160CAD1D2C754499DF3844426062C3

DD

Hash of Keys:

 BB64481317D6C0DBAD20C0C7EF11078AD54E5D574F4A07652115A95F77C655

FA

Message:

 0F9409C5A4930C25B83FC5B77FDB5BB49C75372DE724D9C1A77DB700CF0CF1

54

Hash of sig:

 F86B49BE9DEB2B209BDEB4E922E5939E92D38E562C44BB09AFBD67323C34519

2

Test case 87-RC-03

Seed:

 E693D282CACB8CE65FD4D108DA7A373F097F0AA9713550BE242AAD5BD3E2E4

52

Hash of Keys:

 B0BEAF56713A69BD4AB2CBEE006FA5001E7B41F3AE541E05F088933AA0CC78D

F

cPP_ND_v4.0-SD, 25-NOV-2025 37

Message:

 24DABB9D57ADEBD560ED65D9451C5106D437061708F849BA53F3543CDF9AA

AE0

Hash of sig:

 DBF65CEFF9F96A74AAF6F3AB27B043231BE6AA04FBA2EEC987A24A00BDD6A0

8E

Test case 87-RC-04

Seed:

 4002163EB8EED01A8E0919BA8C07D291341EDCAE25B02B9779A2CFFE50561AF

0

Hash of Keys:

 FED1BE685C20ECB322FC40D41DEE7E0E98D0409FBF989CAE71B8AD2D58AD64

5E

Message:

 EE316BB5EBED53325B4A55571C60657B53E353B51B831F4A0BBB28107EBA4BA

8

Hash of sig:

 3BE9B5545FDCED92547B3409C83B3312CCB5792A8EC3A4DA63BA692C79BEF1

7C

Test case 87-RC-05

Seed:

 9C7AD524F65854C27E565BCEDF8E86D650F13A40D0448F9AE10C05F10F77712

0

Hash of Keys:

 0EA872CA5A4BEA94F4E8EF7ED31800727899A51059FDEE111E5CB15F0233B534

Message:

 CE09831294AA96CAF684B9E667947B021C57B24C138EC7D4DA270694C82F2E0

8

Hash of sig:

 3B9526CEE6587F2418BFE603ADB0F7DF0D69EBA31C9F9F005C60C993945EBD3

3

Test case 87-RC-06

Seed:

 2EB7676D4A28700DA7772A7A035EB495CAA6F842352A74824EF5FD891BC38B

2A

Hash of Keys:

 D5B73703A1DDC5BCB0D14AE39B193A25D6ADA6535827973181ADB0BE70435

A5B

cPP_ND_v4.0-SD, 25-NOV-2025 38

Message:

 C2B3A0AC483A5517682285C205974B2A506946448A8F7D3E1934C155EFDFE92

2

Hash of sig:

 375D598704B722C8A1FEF1626FD7738A532C06329AA4217357460E3B729660F

8

Test case 87-RC-07

Seed:

 E4E80CCE8B26DF1B02B99949851EE2F907FE4F0CC34790352C76D5D91634D07

3

Hash of Keys:

 84B7E61684A12698400B09EA332EA3C4FBCFA47FE37FD6AE725CBC5FA8A99D3

F

Message:

 89E6AB43C9CB1CC59C3986D53217A558357E62102A26F666F2B64CD1DBB7A5

36

Hash of sig:

 7C4AABD163CAEF8F6EBFDA3E3EEBC0A9604675B0E991ABAFD284F1AE8BA07B

2A

Test case 87-RC-08

Seed:

 5787262B803499223D4E5A8C1EE572E89F7A69B359B3F8505355B0BDEAB95E5

C

Hash of Keys:

 85AE1DE605A7B479C02730BF4B7DD6D0FD8FFE5C980893CA6DAD00BD8BD1C

E68

Message:

 D3230C4E061964BBFB17702432D5D36FC1EB3D1068F8CCAA84044776E3B5CC

55

Hash of sig:

 D3ABE460EE2DD9595F413CFE2780A319E4E4DFD6592995298A7AB0B82A5E281

5

Test case 87-RC-09

Seed:

 CE099B99330537DD153052243FC32ACAD509A126AB982410258858567D410D

79

Hash of Keys:

 E04A9F15EDF8F078EB336CE624249EF2A8EDF2CDBF6A8276E9F5E92ED9B0BAE8

Message:

 0035931762665F561A1B22176567E3B10FDE2441521F77030733A8E39312EEEE

cPP_ND_v4.0-SD, 25-NOV-2025 39

Hash of sig:

 3EEF413CB5EB179896ECA172D0DBFB9B251545DC561D61580BD5BBC8B6D734

E1

Test case 87-RC-10

Seed:

 FC8F2929878CBD81E1CCC23913F290380120C043A4A8A251AEEBF09705B8E59

0

Hash of Keys:

 7E2ECCA86F532E8E8092FEBB6E0007F92E7909AD2BCBE2E02AB375DAC9969E5

E

Message:

 D3C28875D2671C0EF23BFDC8869E8ECF8868D3F0561C3134D254F7479D0CE0E

5

Hash of sig:

 EB69A908EDCC04320A0B61AD57E21B044465F2037698636B64229CF2DB25978

9

Known Answer Test for Large Number of Rejection Cases (Total Rejection
Count)

111. For each supported parameter set, the evaluator shall cause the TOE to
generate signatures using the data below and a deterministic seed of all 0’s.
Correctness is determined by comparing the hash of the resulting signature
with the hash in the fourth row of the corresponding test case below.

ML-DSA-87 Test Cases for Total Rejection Count

Test case 87-LN-01

Seed:

 98B6298051D92BF37293C93C97370747BF527B87B71F6C4264182F45155ADE4

C

Hash of Keys:

 04A135B5C9B7020332C7B16E7108E8FF7FC1EAE1C23C5FA0B5D5CED0FEEE742

4

Message:

 D7B0341269259083ABF3C8DC47559A19D57669B4486E0224F376DC43E577A3

D8

Hash of sig:

 58D72D76EC0FB65BFB9893C4479366B79DD7B8B7577E4291D13514FCC76C26

DD

Test case 87-LN-02

cPP_ND_v4.0-SD, 25-NOV-2025 40

Seed:

 DFB5BDD90F58571DCA962426C623F13D046BBE814D183886AC90D143EAD72

5A7

Hash of Keys:

 2B6AB8CFCCCC41F759CAF01932E9413F5DC6D949BC827F739866929683FB155

E

Message:

 21005DB2B583CC826A9684BFFD0EE00AB97E0479FE4A1D26669933754014577

8

Hash of sig:

 C93EA34E00FFFFC3ECEA072D5FB038A83B5539CAF7B831AEDCFA785E50B3CA5

E

Test case 87-LN-03

Seed:

 5AD414E0DD0EF2FE685F342871875FDF06F503717A86C3B3466565ADD209641

7

Hash of Keys:

 BD9C2D52F3FC78DB17E682DA2E78947ECFC0898333838D60C892700B2B0DDA

9F

Message:

 29139C279816B25F2D6BB52C8247D163544F7BA332C3CF63359B9E23FBC5651

5

Hash of sig:

 DB4BE2DE19FB40437BDB7E9B6578D665DB05B4E88C16907DF4546EBA9BE03A

EA

Test case 87-LN-04

Seed:

 484DD2F406A4D15F49A91AD5FC3BDC1D0FF253622EB68F83D6E1C870D0E89E

29

Hash of Keys:

 A719DC9A77C91C46295555C2353BA0CBEA513DA9A92A5C34D2E949EFF46A12

D8

Message:

 6AD6E959F0EA60126364FB7C95FA71133F246A9265A11B4965EE78AB0CB5AF0

E

Hash of sig:

 5050D7A665074EC63D9F3966C1F01A1BFB18F9E83AE0B09F838BC1E2342ED6F

4

Test case 87-LN-05

cPP_ND_v4.0-SD, 25-NOV-2025 41

Seed:

 B25C1816F82D59940D5CB829BAC364AAD013C4C16415CE1CF6DCC2F15199B3

91

Hash of Keys:

 ADBB2CD43F222640BD9FF4E61C80E63853E8DC1F759C581B7447C9C166EAA3

8E

Message:

 824E47322895BFFE37B6B4AFC41CF6115C07EEC0C24EB81076C87A1B01AE8617

Hash of sig:

 667ADA46073BC69D64DC47BB9A76DD0D78302E7415D87D5E816B05FB95F9E8

4D

Test case 87-LN-06

Seed:

 B2CE72B3560AF07E06465881F56ADA00262BA708D87B73F39E04E310F3B8A3E

9

Hash of Keys:

 FD9C4AC53AE803242A62DF933B8E8BAD6CE5207AC4A73683B6D9383B5E70B1

7A

Message:

 A1501CC84C917E0D2D7C27C2AC382220BD8FFFE807DB38E37A9E429EC27819

11

Hash of sig:

 779553B195E11558EE59EF3942F5F6B446A2144600D1F4F50B300C6C56504760

Test case 87-LN-07

Seed:

 AB01D0E591B7DDCD3C03395AED808FA2763C0A486D44119D621BE0FD0B022

B25

Hash of Keys:

 93B6ADE34F78A4ADB36B2F6D2C51DB793E659E1243E80488AE1C03B65125D6

D7

Message:

 8DE8122D89D15FE84A4C34F6B59B2C4B11F33B6A053154D199B634F557FDF5F

6

Hash of sig:

 0483045999A79B583F403DB96A736F0F0B24E2DFBC4E5CFA9B50E3D910786F0

7

Test case 87-LN-08

Seed:

 15D60D3693762F82C9AC1DCB0576936651AC81D863842EDB91109C8EE83AE7

05

cPP_ND_v4.0-SD, 25-NOV-2025 42

Hash of Keys:

 2DF544E2E939AA717741C2437288FAEB308DEB8FF37A2652FAE34BAE8B84D77

9

Message:

 F05946A6113905C34163AEF2246FD69016CE24A7BA40F8E7E42EDAC2D0A4460

5

Hash of sig:

 F8383917AF79C8E540D2356AB05F08B465BF32DFEC444B787CE31BF48CC6C3D

D

Test case 87-LN-09

Seed:

 21212285BED53B3411705DAF5F3BDDB6F0618EB571B36EE11A74053407A269F

5

Hash of Keys:

 737061155A9A03F11F9FEBBB940BED4DD54542C4A6212F89A5EB4EC2BE54278

2

Message:

 FFE38246BF3DEFD9CAD15CC17CEA511C067D582E04227B479E32F9197CF9148

2

Hash of sig:

 C4C12C58032052FB2D21F0C6A7388A63154FB85B74287D2859DE6C1C6F7F277

B

Test case 87-LN-10

Seed:

 A2744470587C71BA43EC26DC390CE3531978F315993C653E5D3EFD2849D5D9F

1

Hash of Keys:

 B1BF37BFFB11531B6ADD697870D7DB2E2462D0A97A63F09C1D0038457C6D79

5A

Message:

 9831A830231A160B9847203341A5F30BF3E87A2A482AEEA6886315C92B5C4E4

C

Hash of sig:

 46C669D2FEB643A38E54FF87B790CC33F44043A1B6B31DB9474D301328CA2A7

F

XMSS Signature Generation

112. To test the TOE’s ability to generate digital signatures using XMSS, the
evaluator shall perform the XMSS Key Generation Test using the following input
parameters:

cPP_ND_v4.0-SD, 25-NOV-2025 43

o Hash algorithm [SHA-256/192, SHAKE256/192, SHA-256,
SHAKE256]

o Tree height [10, 16, 20]

XMSS Key Generation Test

113. For each supported combination of the above parameters, the evaluator shall
generate 10 signatures. The evaluator shall verify the correctness of the
implementation by comparing values generated by the TOE with those
generated by a known-good implementation using the same input parameters.

2.2.6. FCS_COP.1/SigVer Cryptographic Operation - Signature
Verification

2.2.6.1. TSS

114. The evaluator shall examine the TSS to verify that any one-time values such
as nonces or masks are constructed and used in accordance with the relevant
standards.

2.2.6.2. Guidance Documentation

115. There are no additional Guidance evaluation activities for this component.

2.2.6.3. Tests

116. The following tests are conditional based upon the selections made in the
SFR. The evaluator shall perform the following test or witness respective tests
executed by the developer. The tests must be executed on a platform that is as
close as practically possible to the operational platform (but which may be
instrumented in terms of, for example, use of a debug mode). Where the test is
not carried out on the TOE itself, the test platform shall be identified and the
differences between test environment and TOE execution environment shall be
described.

RSA-PKCS Signature Verification

117. To test the TOE’s ability to perform RSA Digital Signature Verification using
PKCS1-v1,5 signature type, the evaluator shall perform the Generated Data Test
using the following input parameters:

o Modulus size [2048, 3072, 4096, 6144, 8192] bits

o Hash algorithm [SHA-256, SHA-384, SHA-512]

cPP_ND_v4.0-SD, 25-NOV-2025 44

Generated Data Test

118. For each supported combination of the above parameters, the evaluator shall
cause the TOE to generate six test cases using a random message and its
signature such that the test cases are modified as follows:

o One test case is left unmodified

o For one test case the Message is modified

o For one test case the Signature is modified

o For one test case the exponent (e) is modified

o For one test case the IR is moved

o For one test case the Trailer is moved

119. The TOE must correctly verify the unmodified signatures and fail to verify
the modified signatures.

RSA-PSS Signature Verification

120. To test the TOE’s ability to perform RSA Digital Signature Verification using
PSS signature type, the evaluator shall perform the Generated Data Test using
the following input parameters:

o Modulus size [2048, 3072, 4096, 6144, 8192] bits

o Hash algorithm [SHA-256, SHA-384, SHA-512]

o Salt length [Fixed based on implementation]

o Mask function [MGF1]

Generated Data Test

121. For each supported combination of the above parameters, the evaluator shall
cause the TOE to generate six test cases using random data such that the test
cases are modified as follows:

o One test case is left unmodified

o For one test case the Message is modified

o For one test case the Signature is modified

o For one test case the exponent (e) is modified

o For one test case the IR is moved

o For one test case the Trailer is moved

cPP_ND_v4.0-SD, 25-NOV-2025 45

122. The TOE must correctly verify the unmodified signatures and fail to verify
the modified signatures.

ECDSA Signature Verification

123. To test the TOE’s ability to perform ECDSA Digital Signature Verification, the
evaluator shall perform the Algorithm Functional Test using the following input
parameters:

o Elliptic Curve [P-256, P-384, P-521]

o Hash algorithm [SHA-256, SHA-384, SHA-512]

Algorithm Functional Test

124. For each supported combination of the above parameters, the evaluator shall
cause the TOE to generate test cases consisting of messages and signatures such
that the 21 test cases are modified as follows:

o Three test cases are left unmodified

o For three test cases the Message is modified

o For three test cases the key is modified

o For three test cases the r value is modified

o For three test cases the s value is modified

o For three test cases the value r is zeroed

o For three test cases the value s is zeroed

125. The TOE must correctly verify the unmodified signatures and fail to verify
the modified signatures.

LMS Signature Verification

126. To test the TOE’s ability to verify cryptographic digital signature using LMS,
the evaluator shall perform the Algorithm Functional Test using the following
input parameters

o Hash algorithm [SHA-256/192, SHAKE256/192, SHA-256,
SHAKE256]

o Winternitz[1, 2, 4, 8]

o Tree height [5, 10, 15, 20, 25]

Algorithm Functional Test

cPP_ND_v4.0-SD, 25-NOV-2025 46

127. For each supported combination of the above parameters, the evaluator shall
generate 4 test cases consisting of signed messages and keys, such that

o One test case is unmodified (i.e. correct)

o For one test case modify the message, i.e. the message is different

o For one test case modify the signature, i.e. signature is different

o For one test case modify the signature header so that it is a valid
header for a different LMS parameter set.

128. The TOE must correctly verify the unmodified test case and fail to verify the
modified test cases.

XMSS Signature Verification

129. To test the TOE’s ability to verify digital signatures using XMSS or XMSS MT,
the evaluator shall perform the XMSS digital signature verification test using the
following input parameters:

o Hash algorithm [SHA-256/192, SHAKE256/192, SHA-256,
SHAKE256]

o Tree height [10, 16, 20]

To test the TOE’s ability to perform RSA Digital Signature Verification using
PSS signature typ

130. For each supported combination of the above parameters, the evaluator shall
generate four test cases consisting of signed messages and keys, such that

o One test case is unmodified (i.e. correct)

o For one test case modify the message, i.e. the message is different

o For one test case modify the signature, i.e. signature is different

o For one test case modify the signature header so that it is a valid
header for a different XMSS parameter set

131. The evaluator shall verify the correctness of the implementation by verifying
that the TOE correctly verifies the unmodified test case and fails to verify the
modified test cases

ML-DSA Signature Verification

132. To test the TOE’s ability to validate digital signatures using ML-DSA, the
evaluator shall perform the Algorithm Functional Test using the following input
parameters:

cPP_ND_v4.0-SD, 25-NOV-2025 47

o Parameter set [ML-DSA-87]

o Previously generated signed Message [8-65535] bytes

o Mu value (if generated externally)

o Context (for external interface testing)

o Previously generated Public key (pk)

o Previously generated Signature

Algorithm Functional Test

133. For each combination of supported parameter set and capabilities, the
evaluator shall require the implementation under test to validate 15 signatures.
Each group of 15 test cases is modified as follows:

o Three test cases are left unmodified

o For three test cases the Signed message is modified

o For three test cases the component of the signature that commits the
signer to the message is modified

o For three test cases the component of the signature that allows the
verifier to construct the vector z is modified

o For three test cases the component of the signature that allows the
verifier to construct the hint array is modified

134. The TOE must correctly verify the unmodified signatures and fail to verify
the modified signatures.

2.2.7. FCS_COP.1/Hash Cryptographic Operation - Hashing

2.2.7.1. TSS

135. The evaluator shall check that the association of the hash function with other
TSF cryptographic functions (for example, the digital signature verification
function) is documented in the TSS.

2.2.7.2. Guidance Documentation

136. The evaluator shall check the AGD documents to determine that any
configuration that is required to configure the required hash sizes is present.

2.2.7.3. Tests

cPP_ND_v4.0-SD, 25-NOV-2025 48

137. The following tests may require the developer to provide access to a test
platform that provides the evaluator with tools that are typically not found on
factory products.

138. The following tests are conditional based upon the selections made in the
SFR. The evaluator shall perform the following test or witness respective tests
executed by the developer. The tests must be executed on a platform that is as
close as practically possible to the operational platform (but which may be
instrumented in terms of, for example, use of a debug mode). Where the test is
not carried out on the TOE itself, the test platform shall be identified and the
differences between test environment and TOE execution environment shall be
described.

SHA-256, SHA-384, SHA-512

139. To test the TOE’s ability to generate hash digests using SHA2 the evaluator
shall perform the Algorithm Functional Test, Monte Carlo Test, and Large Data
Test for each claimed SHA2 algorithm.

Algorithm Functional Test

140. The evaluator shall generate a number of test cases equal to the block size of
the hash (512 for SHA2-256; 1024 for the other SHA2 algorithms).

141. Each test case is to consist of random data of a random length between 0 and
65536 bits, or the largest size supported.

142. Each test case is to consist of random data of a random length between 0 and
65536 bits, or the largest size supported.

Monte Carlo Test

143. Monte Carlo tests begin with a single seed and run 100 iterations of the
chained computation.

144. There are two versions of the Monte Carlo test for SHA-1 and SHA-2. Either
one is acceptable. For the Standard Monte Carlo test the message hashed is
always three times the length of the initial seed.

For j = 0 to 99

 A = B = C = SEED

 For i = 0 to 999

 MSG = A || B || C

 MD = SHA(MSG)

 A = B

 B = C

cPP_ND_v4.0-SD, 25-NOV-2025 49

 C = MD

 Output MD

 SEED = MD

145. For the alternate version of the Monte Carlo Test, the hashed message is
always the same length as the seed.

INITIAL_SEED_LENGTH = LEN(SEED)

For j = 0 to 99

 A = B = C = SEED

 For i = 0 to 999

 MSG = A || B || C

 if LEN(MSG) >= INITIAL_SEED_LENGTH:

 MSG = leftmost INITIAL_SEED_LENGTH bits of MSG

 else:

 MSG = MSG || INITIAL_SEED_LENGTH - LEN(MSG) 0

bits

 MD = SHA(MSG)

 A = B

 B = C

 C = MD

 Output MD

 SEED = MD

146. The evaluator shall compare the output against results generated by a
known-good implementation with the same input

Large Data Test

147. The implementation must be tested against one test case each on large data
messages of 1GB, 2GB, 4GB, and 8GB of data as supported. The data need not be
random. It may, for example, consist of a repeated pattern of 64 bits.

148. The evaluator shall compare the output against results generated by a
known-good implementation with the same input.

SHA3-384, SHA3-512

149. To test the TOE’s ability to generate hash digests using SHA3 the evaluator
shall perform the Algorithm Functional Test, Monte Carlo Test, and Large Data
Tests for each claimed SHA3 algorithm.

Algorithm Functional Test

cPP_ND_v4.0-SD, 25-NOV-2025 50

150. Generate a test case consisting of random data for every message length from
0 bits (or the smallest supported message size) to rate bits, where rate equals

o 832 for SHA3-384 and

o 576 for SHA3-512.

151. Additionally, generate tests cases of random data for messages of every
multiple of (rate+1) bits starting at length rate, and continuing until 65535 is
exceeded.

152. The evaluator shall compare the output against results generated by a
known-good implementation with the same input.

Monte Carlo Test

153. Monte Carlo tests begin with a single seed and run 100 iterations of the
chained computation.

154. For this Monte Carlo Test, the hashed message is always the same length as
the seed.

MD[0] = SEED

INITIAL_SEED_LENGTH = LEN(SEED)

For 100 iterations

 For i = 1 to 1000

 MSG = MD[i-1];

 if LEN(MSG) >= INITIAL_SEED_LENGTH:

 MSG = leftmost INITIAL_SEED_LENGTH bits of MSG

 else:

 MSG = MSG || INITIAL_SEED_LENGTH - LEN(MSG) 0

bits

 MD[i] = SHA3(MSG)

 MD[0] = MD[1000]

 Output MD[0]

155. The evaluator shall compare the output against results generated by a
known-good implementation with the same input.

Large Data Test

156. The implementation must be tested against one test case each on large data
messages of 1GB, 2GB, 4GB, and 8GB of data as supported. The data need not be
random. It may, for example, consist of a repeated pattern of 64 bits.

157. The evaluator shall compare the output against results generated by a
known-good implementation with the same input.

cPP_ND_v4.0-SD, 25-NOV-2025 51

2.2.8. FCS_COP.1/KeyedHash Cryptographic Operation - Keyed Hash

2.2.8.1. TSS

158. The evaluator shall examine the TSS to ensure that the size of the key is
sufficient for the desired security strength of the output.

2.2.8.2. Guidance Documentation

159. There are no additional Guidance evaluation activities for this component.

2.2.8.3. Tests

160. The following tests are conditional based upon the selections made in the
SFR. The evaluator shall perform the following test or witness respective tests
executed by the developer. The tests must be executed on a platform that is as
close as practically possible to the operational platform (but which may be
instrumented in terms of, for example, use of a debug mode). Where the test is
not carried out on the TOE itself, the test platform shall be identified and the
differences between test environment and TOE execution environment shall be
described.

HMAC

161. To test the TOE’s ability to generate keyed hashes using HMAC the evaluator
shall perform the Algorithm Functional Test for each combination of claimed
HMAC algorithm the following parameters:

o Hash function [SHA-256, SHA-384, SHA-512]

o Key length [8-65536] bits by 8s

o MAC length [32-[digest size of hash function (256, 384, 512)]] bits

Algorithm Functional Test

162. For each supported Hash function the evaluator shall generate 150 test cases
using random input messages of 128 bits, random supported key lengths,
random keys, and random supported MAC lengths such that across the 150 test
cases:

o The key length includes the minimum, the maximum, a key length
equal to the block size, and key lengths that are both larger and
smaller than the block size.

cPP_ND_v4.0-SD, 25-NOV-2025 52

o The MAC size includes the minimum, the maximum, and two other
random values.

163. The evaluator shall compare the output against results generated by a
known-good implementation with the same input.

2.2.9. FCS_RBG.1 Random Bit Generation (RBG)

164. Documentation shall be produced—and the evaluator shall perform the
activities—in accordance with Annex D of [NDcPP].

2.2.9.1. TSS

FCS_RBG.1.1

165. The evaluator shall examine the TSS to determine it identifies the DRBGs
used by the TOE.

FCS_RBG.1.2

166. There are no additional TSS evaluation activities for this element.

FCS_RBG.1.3

167. The evaluator shall verify that the TSS identifies how the DRBG state is
updated, and the situations under which this may occur.

2.2.9.2. Guidance Documentation

FCS_RBG.1.1

168. If the DRBG functionality is configurable, the evaluator shall verify that the
operational guidance includes instructions on how to configure this behaviour.

FCS_RBG.1.2

169. There are no additional Guidance evaluation activities for this element.

FCS_RBG.1.3

170. If the ST claims that the DRBG state can be updated on demand, the evaluator
shall verify that the operational guidance has instructions for how to perform
this operation.

cPP_ND_v4.0-SD, 25-NOV-2025 53

2.2.9.3. Tests

FCS_RBG.1.1

171. The evaluator shall perform 15 trials for the RNG implementation. If the RNG
is configurable, the evaluator shall perform 15 trials for each configuration.

172. If the RNG has prediction resistance enabled, each trial consists of (1)
instantiate DRBG, (2) generate the first block of random bits (3) generate a
second block of random bits (4) uninstantiate. The evaluator shall verify that
the second block of random bits is the expected value. The evaluator shall
generate eight input values for each trial. The first is a count (0 – 14). The next
three are entropy input, nonce, and personalization string for the instantiate
operation. The next two are additional input and entropy input for the first call
to generate. The final two are additional input and entropy input for the second
call to generate. These values are randomly generated. “generate one block of
random bits” means to generate random bits with number of returned bits
equal to the Output Block Length (as defined in NIST SP800-90A).

173. If the RNG does not have prediction resistance, each trial consists of (1)
instantiate DRBG, (2) generate the first block of random bits (3) reseed, (4)
generate a second block of random bits (5) uninstantiate. The evaluator shall
verify that the second block of random bits is the expected value. The evaluator
shall generate eight input values for each trial. The first is a count (0 – 14). The
next three are entropy input, nonce, and personalization string for the
instantiate operation. The fifth value is additional input to the first call to
generate. The sixth and seventh are additional input and entropy input to the
call to reseed. The final value is additional input to the second generate call.

174. The following paragraphs contain more information on some of the input
values to be generated/selected by the evaluator.

o Entropy input: the length of the entropy input value must equal the
seed length.

o Nonce: If a nonce is supported (CTR_DRBG with no Derivation
Function does not use a nonce), the nonce bit length is one-half the
seed length.

o Personalization string: The length of the personalization string must
be ≤ seed length. If the implementation only supports one
personalization string length, then the same length can be used for
both values. If more than one string length is support, the evaluator
shall use personalization strings of two different lengths. If the
implementation does not use a personalization string, no value needs
to be supplied.

cPP_ND_v4.0-SD, 25-NOV-2025 54

o Additional input: the additional input bit lengths have the same
defaults and restrictions as the personalization string lengths.

FCS_RBG.1.2

175. There are no test activities for this element.

FCS_RBG.1.3

176. There are no test activities for this element.

2.3. Identification and Authentication (FIA)

2.3.1. FIA_UIA_EXT.1 User Identification and Authentication

2.3.1.1. TSS

177. The evaluator shall examine the TSS to determine that it describes the logon
process for remote authentication mechanism (e.g., SSH public key, Web GUI
password, etc.) and optional local authentication mechanisms supported by the
TOE. This description shall contain information pertaining to the credentials
allowed/used, any protocol transactions that take place, and what constitutes a
“successful logon”.

178. The evaluator shall examine the TSS to determine that it describes which
actions are allowed before administrator identification and authentication. The
description shall cover authentication and identification for local and remote
TOE administration.

179. For distributed TOEs, the evaluator shall examine that the TSS details how
Security Administrators are authenticated and identified by all TOE
components. If not all TOE components support authentication of Security
Administrators according to FIA_UIA_EXT.1, the TSS shall describe how the
overall TOE functionality is split between TOE components including how it is
ensured that no unauthorised access to any TOE component can occur.

180. For distributed TOEs, the evaluator shall examine the TSS to determine that
it describes, for each TOE component, which actions are allowed before
administrator identification and authentication. The description shall cover
authentication and identification for remote TOE administration and optionally
for local TOE administration if claimed by the ST author. For each TOE
component that does not support authentication of Security Administrators
according to FIA_UIA_EXT.1, the TSS shall describe any unauthenticated
services/services that are supported by the component.

cPP_ND_v4.0-SD, 25-NOV-2025 55

2.3.1.2. Guidance Documentation

181. The evaluator shall examine the guidance documentation to determine that
any necessary preparatory steps (e.g., establishing credential material such as
pre- shared keys, tunnels, certificates, etc.) to logging in are described. For each
supported login method, the evaluator shall ensure the guidance documentation
provides clear instructions for successfully logging on. If configuration is
necessary to ensure the services provided before login are limited, the evaluator
shall determine that the guidance documentation provides sufficient instruction
on limiting the allowed services.

2.3.1.3. Tests

182. The evaluator shall perform the following tests for each method by which
administrators access the TOE (local and remote), as well as for each type of
credential supported by the login method:

a. Test 1: The evaluator shall use the guidance documentation to
configure the appropriate credential supported for the login method.
For all combinations of supported credentials and login methods, the
evaluator shall show that providing correct I&A information results in
the ability to access the system, while providing incorrect information
results in denial of access.

b. Test 2: The evaluator shall configure the services allowed (if any)
according to the guidance documentation, and then determine the
services available to an external remote entity. The evaluator shall
determine that the list of services available is limited to those
specified in the requirement.

c. Test 3: For local access, the evaluator shall determine what services
are available to a local administrator prior to logging in, and make
sure this list is consistent with the requirement.

d. Test 4: For distributed TOEs, where not all TOE components support
the authentication of Security Administrators according to
FIA_UIA_EXT.1, the evaluator shall test that the components
authenticate Security Administrators as described in the TSS.

2.4. Security management (FMT)

2.4.1. General Requirements for Distributed TOEs

For distributed TOEs, the evaluation activities defined in this chapter shall be
performed.

cPP_ND_v4.0-SD, 25-NOV-2025 56

2.4.1.1. TSS

183. For distributed TOEs, the evaluator shall verify that the TSS describes how
every function related to security management is realized for every TOE
component and shared between different TOE components. The evaluator shall
confirm that all relevant aspects of each TOE component are covered by the
FMT SFRs.

2.4.1.2. Guidance Documentation

184. For distributed TOEs, the evaluator shall verify that the Guidance
Documentation describes management of each TOE component. The evaluator
shall confirm that all relevant aspects of each TOE component are covered by
the FMT SFRs.

2.4.1.3. Tests

185. Tests defined to verify the correct implementation of security management
functions shall be performed for every TOE component. For security
management functions that are implemented centrally, sampling should be
applied when defining the evaluator’s tests (ensuring that all components are
covered by the sample).

2.4.2. FMT_MOF.1/ManualUpdate Management of security functions
behaviour

2.4.2.1. TSS

186. For distributed TOEs, see Section 2.4.1.1. There are no specific requirements
for non-distributed TOEs.

2.4.2.2. Guidance Documentation

187. The evaluator shall examine the guidance documentation to determine that
any necessary steps to perform manual update are described. The guidance
documentation shall also provide warnings regarding functions that may cease
to operate during the update (if applicable).

188. For distributed TOEs, the guidance documentation shall describe all steps for
how to update all TOE components. This shall contain a description of the order
in which components need to be updated if the order is relevant to the update
process. The guidance documentation shall also provide warnings regarding
functions of TOE components and the overall TOE that may cease to operate
during the update (if applicable).

cPP_ND_v4.0-SD, 25-NOV-2025 57

2.4.2.3. Tests

189. The evaluator shall perform the following tests:

a. Test 1: The evaluator shall try to perform the update using a
legitimate update image without prior authentication as Security
Administrator (either by authentication as a user with no
administrator privileges or without user authentication at all –
depending on the configuration of the TOE). The attempt to update
the TOE shall fail.

b. Test 2: The evaluator shall try to perform the update with prior
authentication as Security Administrator using a legitimate update
image. This attempt should be successful. This test case is covered by
Test 1 for FPT_TUD_EXT.1.

2.4.3. FMT_MTD.1/CoreData Management of TSF Data

2.4.3.1. TSS

190. For each administrative function identified in the guidance documentation
that is accessible through an interface prior to administrator log-in, the
evaluator shall confirm that the TSS details how the ability to manipulate the
TSF data through these interfaces is disallowed for non-administrative users.

191. If the TOE supports handling of X.509v3 certificates and implements a trust
store, the evaluator shall examine the TSS to determine that it contains
sufficient information to describe how the ability to manage the TOE’s trust
store is restricted.

2.4.3.2. Guidance Documentation

192. The evaluator shall review the guidance documentation to determine that
each of the TSF-data-manipulating functions implemented in response to the
requirements of the cPP is identified, and that configuration information is
provided to ensure that only administrators have access to the functions.

193. If the TOE supports handling of X.509v3 certificates and provides a trust
store, the evaluator shall review the guidance documentation to determine that
it provides sufficient information for the administrator to configure and
maintain the trust store in a secure way. If the TOE supports loading of CA
certificates, the evaluator shall review the guidance documentation to
determine that it provides sufficient information for the administrator to
securely load CA certificates into the trust store. The evaluator shall also review
the guidance documentation to determine that it explains how to designate a CA
certificate a trust anchor.

cPP_ND_v4.0-SD, 25-NOV-2025 58

2.4.3.3. Tests

194. No separate testing for FMT_MTD.1/CoreData is required unless one of the
management functions has not already been exercised under any other SFR.

2.4.4. FMT_SMF.1 Specification of Management Functions

195. The security management functions for FMT_SMF.1 are distributed
throughout the cPP and are included as part of the requirements in
FTA_SSL_EXT.1, FTA_SSL.3, FTA_TAB.1, FMT_MOF.1/ManualUpdate,
FMT_MOF.1/AutoUpdate (if included in the ST), FIA_AFL.1, FPT_TUD_EXT.1.2
and FPT_TUD_EXT.2.2 (if included in the ST and if an administrator-configurable
action is included as per Application Note 65 of FPT_TUD_EXT.2.4 in the cPP),
FMT_MOF.1/Services, and FMT_MOF.1/Functions (for all of these SFRs that are
included in the ST), FMT_MTD, FPT_TST_EXT, and any cryptographic
management functions specified in the reference standards. If the TOE claims
conformance to the Functional Package for X.509, any management functions
defined there are relevant to this SFR as well. Compliance to these requirements
satisfies compliance with FMT_SMF.1.

2.4.4.1. TSS (containing also requirements on Guidance
Documentation and Tests)

196. The evaluator shall examine the TSS and Guidance Documentation and
confirm that each management function specified in FMT_SMF.1 is adequately
described. The evaluator shall confirm that the TSS details which security
management functions are available through the local and/or remote
administration interfaces.

197. [Conditional] The evaluator shall examine the TSS and Guidance
Documentation to verify they both describe the local administrative interface.
The evaluator shall ensure the Guidance Documentation includes appropriate
warnings for the administrator to ensure the interface is local.

198. For distributed TOEs, with the option 'ability to configure the interaction
between TOE components' the evaluator shall examine that the ways to
configure the interaction between TOE components is detailed in the TSS and
Guidance Documentation. The evaluator shall check that the TOE behaviour
observed during testing of the configured SFRs is as described in the TSS and
Guidance Documentation.

199. (If 'configure local audit' is selected) The evaluator shall examine the TSS and
Guidance Documentation to ensure that a description of the logging
implementation is described in enough detail to determine how log files are
maintained on the TOE.

cPP_ND_v4.0-SD, 25-NOV-2025 59

2.4.4.2. Guidance Documentation

200. See Section 2.4.4.1.

2.4.4.3. Tests

201. The evaluator shall test management functions as part of testing the SFRs
identified in Section 2.4.4. No separate testing for FMT_SMF.1 is required unless
one of the management functions in FMT_SMF.1.1 has not already been
exercised under any other SFR.

2.4.5. FMT_SMR.2 Restrictions on Security Roles

2.4.5.1. TSS

202. The evaluator shall examine the TSS to determine that it details the TOE
supported roles and any restrictions of the roles involving administration of the
TOE (e.g., if local administrators and remote administrators have different
privileges, or if several types of administrators with different privileges are
supported by the TOE).

2.4.5.2. Guidance Documentation

203. The evaluator shall review the guidance documentation to ensure that it
contains instructions for administering the TOE both locally and remotely,
including any configuration that needs to be performed on the client for remote
administration.

2.4.5.3. Tests

204. In the course of performing the testing activities for the evaluation, the
evaluator shall use all supported interfaces, although it is not necessary to
repeat each test involving an administrative action with each interface. The
evaluator shall ensure, however, that each supported method of administering
the TOE that conforms to the requirements of this cPP be tested.

205. For example, if the following are possible:

o direct connection if the TOE can be administered through a local
hardware interface

o SSH if the TSF shall be validated against the Functional Package for
Secure Shell referenced in Section 2.2 of the cPP

o TLS/HTTPS if the TSF has TLS implemented as defined in the
Functional Package for TLS

cPP_ND_v4.0-SD, 25-NOV-2025 60

then all three methods of administration must be exercised during the evaluation
team’s test activities.

2.5. Protection of the TSF (FPT)

2.5.1. FPT_SKP_EXT.1 Protection of TSF Data (for Reading of All
Symmetric Keys)

2.5.1.1. TSS

206. The evaluator shall examine the TSS to determine that it details how any
preshared keys, symmetric keys, and private keys are stored and that they are
unable to be viewed through any interface designed specifically for that
purpose, by any enabled role, as outlined in the application note. If these values
are not stored in plaintext, the TSS shall describe how they are
protected/obscured.

2.5.1.2. Guidance Documentation

207. None

2.5.1.3. Tests

208. None

2.5.2. FPT_STM_EXT.1 Reliable Time Stamps

2.5.2.1. TSS

209. The evaluator shall examine the TSS to ensure that it lists each security
function that makes use of time, and that it provides a description of how the
time is maintained and considered reliable in the context of each of the time
related functions.

210. If 'obtain time from the underlying virtualization system' is selected, the
evaluator shall examine the TSS to ensure that it identifies the Virtualization
System (VS) interface the TOE uses to obtain time. If there is a delay between
updates to the time on the VS and updating the time on the TOE, the TSS shall
identify the maximum possible delay.

2.5.2.2. Guidance Documentation

cPP_ND_v4.0-SD, 25-NOV-2025 61

211. The evaluator shall examine the guidance documentation to ensure it
instructs the administrator how to set the time. If the TOE supports the use of
an NTP server, the guidance documentation instructs how a communication
path is established between the TOE and the NTP server, and any configuration
of the NTP client on the TOE to support this communication.

212. If the TOE supports obtaining time from the underlying VS, then the
evaluator shall verify that the Guidance Documentation specifies any
configuration steps necessary. If no configuration is necessary, then no
statement is necessary in the Guidance Documentation. If there is a delay
between updates to the time on the VS and updating the time on the TOE, then
the evaluator shall ensure the Guidance Documentation informs the
administrator of the maximum possible delay.

2.5.2.3. Tests

213. The evaluator shall perform the following tests:

a. Test 1: If the TOE supports direct setting of the time by the Security
Administrator, then the evaluator shall use the guidance
documentation to set the time. The evaluator shall then use an
available interface to observe that the time was set correctly.

b. Test 2: If the TOE supports the use of an NTP server, then the
evaluator shall use the guidance documentation to configure the NTP
client on the TOE and set up a communication path with the NTP
server. The evaluator shall observe that the NTP server has set the
time to what is expected. If the TOE supports multiple protocols for
establishing a connection with the NTP server, then the evaluator
shall perform this test using each supported protocol claimed in the
guidance documentation.

c. Test 3 [conditional]: If the TOE obtains time from the underlying VS,
then the evaluator shall record the time on the TOE, modify the time
on the underlying VS, and verify the modified time is reflected by the
TOE. If there is a delay between setting the time on the VS and when
the time is reflected on the TOE, then the evaluator shall ensure this
delay is consistent with the TSS and Guidance.

214. If the audit component of the TOE consists of several parts with independent
time information, then the evaluator shall verify that the time information
between the different parts are either synchronized or that it is possible for all
audit information to relate the time information of the different part to one base
information unambiguously.

2.5.3. FPT_TST_EXT.1 TSF Testing

cPP_ND_v4.0-SD, 25-NOV-2025 62

2.5.3.1. TSS

215. The evaluator shall examine the TSS to ensure that it details each of the self-
tests that are identified by the SFR; this description should include an outline of
what the tests are actually doing (e.g., rather than saying "memory is tested", a
description similar to "memory is tested by writing a value to each memory
location and reading it back to ensure it is identical to what was written" shall
be used). The evaluator shall ensure that the TSS makes an argument that the
tests are sufficient to demonstrate that the TSF is operating correctly. If more
than one failure response is listed in FPT_TST_EXT.1.2, then the evaluator shall
examine the TSS to ensure it clarifies which response is associated with which
type of failure.

216. For distributed TOEs, the evaluator shall examine the TSS to ensure that it
details which TOE component performs which self-tests and when these self-
tests are run. The evaluator shall also examine the TSS to ensure it describes
how the TOE reacts if one or more TOE components fail self-testing (e.g., halting
and displaying an error message; failover behaviour).

2.5.3.2. Guidance Documentation

217. The evaluator shall also ensure that the guidance documentation describes
the possible errors that may result from such tests, and actions the
administrator should take in response; these possible errors shall correspond to
those described in the TSS.

218. For distributed TOEs, the evaluator shall ensure that the guidance
documentation describes how to determine from an error message returned
which TOE component has failed the self-test.

2.5.3.3. Tests

219. It is expected that at least the following tests are performed:

a. Verification of the integrity of the firmware and executable software
of the TOE.

b. Verification of the correct operation of the cryptographic functions
necessary to fulfil any of the SFRs.

220. Although formal compliance is not mandated, the self-tests performed should
aim for a level of confidence comparable to:

a. [FIPS 140-2], Section 4.9.1, Software/firmware integrity test for the
verification of the integrity of the firmware and executable software.
Note that the testing is not restricted to the cryptographic functions of
the TOE.

cPP_ND_v4.0-SD, 25-NOV-2025 63

b. [FIPS 140-2], Section 4.9.1, Cryptographic algorithm test for the
verification of the correct operation of cryptographic functions.
Alternatively, national requirements of any CCRA member state for
the security evaluation of cryptographic functions should be
considered as appropriate.

c. [FIPS 140-3] ([ISO/IEC 19790:2015]), Section 7.10.2.2,
Software/firmware integrity test for the verification of the integrity of
the firmware and executable software. Note that the testing is not
restricted to the cryptographic functions of the TOE.

d. [ISO/IEC 19790:2025], Section 7.10.3.2, Pre-operational
software/firmware integrity test. Verification using an approved
integrity technique. Note that the testing is not restricted to the
cryptographic functions of the TOE.

221. The evaluator shall verify that the self-tests described above are carried out
according to the SFR and in agreement with the descriptions in the TSS.

222. For distributed TOEs, the evaluator shall perform testing of self-tests on all
TOE components according to the description in the TSS about which self-tests
are performed by which component.

2.5.4. FPT_TUD_EXT.1 Trusted Update

2.5.4.1. TSS

223. The evaluator shall verify that the TSS describes how to query the currently
active version. If a trusted update can be installed on the TOE with a delayed
activation, the TSS shall describe how and when the inactive version becomes
active. The evaluator shall verify this description.

224. The evaluator shall verify that the TSS describes all TSF software update
mechanisms for updating the system firmware and software (for simplicity the
term 'software' will be used in the following although the requirements apply to
firmware and software). The evaluator shall verify that the description includes
the method used to authenticate the update, including either digital-signature
verification or X.509 certificate-based verification when selected in
FPT_TUD_EXT.1. The evaluator shall verify that the TSS describes how
candidate updates are obtained, the processing performed to authenticate the
update, and the actions taken for both successful and unsuccessful
authentication.

225. If the options ‘support automatic checking for updates’ or ‘support automatic
updates’ are chosen from the selections in FPT_TUD_EXT.1.2, the evaluator shall
verify that the TSS explains what actions are involved in automatic checking or
automatic updating by the TOE, respectively.

cPP_ND_v4.0-SD, 25-NOV-2025 64

226. For distributed TOEs, the evaluator shall examine the TSS to ensure that it
describes how all TOE components are updated, that it describes all
mechanisms that support continuous proper functioning of the TOE during
update (when applying updates separately to individual TOE components) and
how verification of the signature is performed for each TOE component.

2.5.4.2. Guidance Documentation

227. The evaluator shall verify that the guidance documentation describes how to
query the currently active version. If a trusted update can be installed on the
TOE with a delayed activation, the guidance documentation shall describe how
to query the loaded but inactive version.

228. The evaluator shall verify that the guidance documentation describes how
the verification of the authenticity of the update is performed (digital signature
verification). The description shall include the procedures for successful and
unsuccessful verification. The description shall correspond to the description in
the TSS.

229. For distributed TOEs, the evaluator shall verify that the guidance
documentation describes how the versions of individual TOE components are
determined for FPT_TUD_EXT.1, how all TOE components are updated, and the
error conditions that may arise from checking or applying the update (e.g.,
failure of signature verification, or exceeding available storage space) along
with appropriate recovery actions. The guidance documentation only has to
describe the procedures relevant for the Security Administrator; it does not
need to give information about the internal communication (amongst TOE
components) that takes place when applying updates.

230. For distributed TOEs, the evaluator shall examine the Guidance
Documentation to ensure that it describes how all TOE components are
updated, that it describes all mechanisms that support continuous proper
functioning of the TOE during update (when applying updates separately to
individual TOE components) and how verification of the signature is performed
for each TOE component.

231. If the ST author indicates that a certificate-based mechanism is used for
software update digital signature verification, the evaluator shall verify that the
Guidance Documentation contains a description of how the certificates are
contained on the device. The evaluator shall also ensure that the Guidance
Documentation describes how the certificates are installed/updated/selected, if
necessary.

2.5.4.3. Tests

232. The evaluator shall perform the following tests:

cPP_ND_v4.0-SD, 25-NOV-2025 65

a. Test 1: The evaluator shall perform the version verification activity to
determine the current version of the product. If a trusted update can
be installed on the TOE with a delayed activation, the evaluator shall
also query the most recently installed version (for this test the TOE
shall be in a state where these two versions match). The evaluator will
obtain a legitimate update using procedures described in the guidance
documentation and verify that it has been successfully installed on the
TOE. For some TOEs loading the update onto the TOE and activation
of the update are separate steps (‘activation’ could be performed e.g.,
by a distinct activation step or by rebooting the device). In that case,
the evaluator shall verify after loading the update onto the TOE but
before activation of the update that the current version of the product
did not change but the most recently installed version has changed to
the new product version. After the update, the evaluator shall perform
the version verification activity again to verify the version correctly
corresponds to that of the update and that current version of the
product and most recently installed version match again.

b. Test 2: If the TOE itself verifies a digital signature in order to
authorise the installation of an image to update the TOE, the following
test shall be performed (otherwise the test shall be omitted). The
evaluator shall first confirm that no updates are pending and then
perform the version verification activity to determine the current
version of the product, verifying that it is different from the version
claimed in the update(s) to be used in this test. The evaluator shall
obtain or produce illegitimate updates as defined below and attempt
to install them on the TOE. The evaluator shall verify that the TOE
rejects all of the illegitimate updates. The evaluator shall perform this
test using all of the following forms of illegitimate updates:

i. A modified version (e.g., using a hex editor) of a legitimately
signed update

ii. An image that has not been signed

iii. An otherwise valid image with a properly formed signature
that was signed by an unknown key. The purpose of this test
is to verify the TOE would only accept images signed by an
explicitly trusted key (or a key associated with a trusted
certificate).

iv. The handling of version information of the most recently
installed version might differ between different TOEs
depending on the point in time when an attempted update
is rejected. The evaluator shall verify that the TOE handles
the most recently installed version information for that case
as described in the guidance documentation. After the TOE
has rejected the update, the evaluator shall verify that both

cPP_ND_v4.0-SD, 25-NOV-2025 66

the current version and most recently installed version
reflect the same version information as prior to the update
attempt.

233. The evaluator shall perform Test 1 and Test 2 for all supported methods
(manual updates, automatic checking for updates, automatic updates).

234. For distributed TOEs, the evaluator shall perform Test 1 and Test 2 for all
TOE components.

2.6. TOE Access (FTA)

2.6.1. FTA_SSL.3 TSF-Initiated Termination

2.6.1.1. TSS

235. The evaluator shall examine the TSS to determine that it details the
administrative remote session termination and the related inactivity time
period.

2.6.1.2. Guidance Documentation

236. The evaluator shall confirm that the guidance documentation includes
instructions for configuring the inactivity time period for remote administrative
session termination.

2.6.1.3. Tests

237. For each method of remote administration, the evaluator shall perform the
following test:

a. Test 1: The evaluator shall follow the guidance documentation to
configure several different values for the inactivity time period
referenced in the component. For each period configured, the
evaluator shall establish a remote interactive session with the TOE.
The evaluator shall then observe that the session is terminated after
the configured time period.

2.6.2. FTA_SSL.4 User-Initiated Termination

2.6.2.1. TSS

238. The evaluator shall examine the TSS to determine that it details how the
remote administrative session (and if applicable the local administrative
session) are terminated.

cPP_ND_v4.0-SD, 25-NOV-2025 67

2.6.2.2. Guidance Documentation

239. The evaluator shall confirm that the guidance documentation states how to
terminate a remote interactive session (and if applicable the local
administrative session).

2.6.2.3. Tests

240. The evaluator shall perform the following tests:

a. Test 1 [conditional]: If the TOE supports local administration, the
evaluator shall initiate an interactive local session with the TOE. The
evaluator shall then follow the guidance documentation to exit or log
off the session and observe that the session has been terminated.

b. Test 2: For each method of remote administration, the evaluator shall
initiate an interactive remote session with the TOE. The evaluator
shall then follow the guidance documentation to exit or log off the
session and observe that the session has been terminated.

2.6.3. FTA_TAB.1 Default TOE Access Banners

2.6.3.1. TSS

241. The evaluator shall check the TSS to ensure that it details each administrative
method of access (local and/or remote) available to the Security Administrator
(e.g., serial port, SSH, HTTPS). The evaluator shall check the TSS to ensure that
all administrative methods of access available to the Security Administrator are
listed and that the TSS states that the TOE is displaying an advisory notice and a
consent warning message for each administrative method of access. The
advisory notice and the consent warning message may be different for different
administrative methods of access and may be configured during initial
configuration (e.g., via a configuration file).

2.6.3.2. Guidance Documentation

242. The evaluator shall check the guidance documentation to ensure that it
describes how to configure the banner message.

2.6.3.3. Tests

243. The evaluator shall also perform the following test:

a. Test 1: The evaluator shall follow the guidance documentation to
configure a notice and consent warning message. The evaluator shall

cPP_ND_v4.0-SD, 25-NOV-2025 68

then, for each method of human interactive access specified in the
TSS, establish a session with the TOE. The evaluator shall verify that
the notice and consent warning message is displayed in each instance.

2.7. Trusted path/channels (FTP)

2.7.1. FTP_ITC.1 Inter-TSF Trusted Channel

2.7.1.1. TSS

244. The evaluator shall examine the TSS to determine that, for all
communications with authorised IT entities identified in the requirement, each
secure communication mechanism is identified in terms of the allowed
protocols for that IT entity, whether the TOE acts as a server or a client, and the
method of assured identification of the non-TSF endpoint. The evaluator shall
also confirm that all secure communication mechanisms are described in
sufficient detail to allow the evaluator to match them to the cryptographic
protocol SFRs listed in the ST.

2.7.1.2. Guidance Documentation

245. The evaluator shall confirm that the guidance documentation contains
instructions for establishing the allowed protocols with each authorised IT
entity, and that it contains recovery instructions should a connection be
unintentionally broken.

2.7.1.3. Tests

246. The developer shall provide to the evaluator application layer configuration
settings for all secure communication mechanisms specified by the FTP_ITC.1
requirement. This information should be sufficiently detailed to allow the
evaluator to determine the application layer timeout settings for each
cryptographic protocol. There is no expectation that this information must be
recorded in any public-facing document or report.

247. The evaluator shall perform the following tests:

a. Test 1: The evaluator shall ensure that communications using each
protocol with each authorised IT entity is tested during the course of
the evaluation, setting up each connection as described in the
guidance documentation and ensuring that communication is
successful.

b. Test 2: For each protocol that the TOE can initiate as defined in the
requirement, the evaluator shall follow the guidance documentation

cPP_ND_v4.0-SD, 25-NOV-2025 69

to ensure that the communication channel can in fact be initiated from
the TOE.

c. Test 3: The evaluator shall verify that, for each communication
channel with an authorised IT entity, the channel data is not sent in
plaintext.

d. Test 4: Objective: The objective of this test is to ensure that the TOE
reacts appropriately to any connection outage or interruption of the
route to the external IT entities.

The evaluator shall, for each instance where the TOE acts as a client
using a secure communication mechanism with a distinct IT entity,
interrupt the connection of that IT entity for: i) a duration that
exceeds the TOE’s application layer timeout setting, ii) a duration
shorter than the application layer timeout but of sufficient length to
interrupt the network link layer.

The evaluator shall ensure that, when the connectivity is restored,
communications are appropriately protected and no TSF data is sent
in plaintext.

In the case where the TOE is able to detect TOE external interruption
(such as a cable being physically removed or a virtual connection
being disabled), another network device shall be used to interrupt the
connection between the TOE and the distinct IT entity. The
interruption shall be external to the TOE (i.e., by manipulating the test
environment and not by TOE configuration change).

248. Further assurance activities are associated with the specific protocols.

249. For distributed TOEs, the evaluator shall perform tests on all TOE
components according to the mapping of external secure channels to TOE
components in the Security Target.

250. The developer shall provide to the evaluator application layer configuration
settings for all secure communication mechanisms specified by the FTP_ITC.1
requirement. This information should be sufficiently detailed to allow the
evaluator to determine the application layer timeout settings for each
cryptographic protocol. There is no expectation that this information must be
recorded in any public- facing document or report.

2.7.2. FTP_TRP.1/Admin Trusted Path

2.7.2.1. TSS

cPP_ND_v4.0-SD, 25-NOV-2025 70

251. The evaluator shall examine the TSS to determine that the remote TOE
administration methods are indicated, along with how those communications
are protected. The evaluator shall also confirm that all protocols listed in the
TSS in support of TOE administration are consistent with those specified in the
requirement, and are included in the requirements in the ST.

2.7.2.2. Guidance Documentation

252. The evaluator shall confirm that the guidance documentation contains
instructions for establishing the remote administrative sessions for each
supported method.

2.7.2.3. Tests

253. The evaluator shall perform the following tests:

a. Test 1: The evaluators shall ensure that communications using each
specified (in the guidance documentation) remote administration
method are tested during the course of the evaluation, setting up the
connections as described in the guidance documentation and
verifying that communication is successful.

b. Test 2: The evaluator shall verify, for each communication channel,
the channel data is not sent in plaintext.

254. Further assurance activities are associated with the specific protocols.

255. For distributed TOEs, the evaluator shall perform tests on all TOE
components according to the mapping of trusted paths to TOE components in
the Security Target.

cPP_ND_v4.0-SD, 25-NOV-2025 71

3. Evaluation Activities for Optional
Requirements
3.1. Security Audit (FAU)

3.1.1. FAU_STG.2 Protected audit data storage

3.1.1.1. TSS

256. The evaluator shall examine the TSS to ensure it describes the amount of
audit data stored locally and how it is protected against unauthorised
modification or deletion. The evaluator shall verify that the TSS describes the
conditions that must be met for authorised deletion of audit records.

257. For distributed TOEs, the evaluator shall examine the TSS to ensure it
describes to which TOE components this SFR applies and how local storage is
implemented among the different TOE components (e.g., every TOE component
either provides its own local storage, or the data is sent to another TOE
component for central local storage of all audit events).

3.1.1.2. Guidance Documentation

258. The evaluator shall examine the guidance documentation to determine if it
describes any configuration required for protection of the locally stored audit
data against unauthorised modification or deletion.

3.1.1.3. Tests

259. The evaluator shall perform the following tests:

a. Test 1: The evaluator shall attempt to access the audit trail without
authentication as a Security Administrator (either by authentication
as a non-administrative user, if supported, or without authentication
at all) and attempt to modify and delete the audit records. The
evaluator shall verify that these attempts fail.

In the case that no other users than the Security Administrator can be
defined, without user authentication the user may not be able to get to
the point where the attempt to access the audit trail can be executed.
In this case it shall be demonstrated that access control mechanisms
prevent execution up to the step that can be reached without
authentication as Security Administrator.

cPP_ND_v4.0-SD, 25-NOV-2025 72

b. Test 2: The evaluator shall access the audit trail as an authenticated
Security Administrator and attempt to delete the audit records (if
supported by the TOE, and to the extent described in the TSS). The
evaluator shall verify that these attempts succeed. The evaluator shall
verify that only the records authorised for deletion are deleted.

260. For distributed TOEs, the evaluator shall perform test 1 and test 2 for each
component that is defined by the TSS to be covered by this SFR.

3.1.2. FAU_STG_EXT.2 Counting Lost Audit Data

261. This activity should be accomplished in conjunction with the testing of
FAU_STG_EXT.1.4 and FAU_STG_EXT.1.5.

3.1.2.1. TSS

262. The evaluator shall examine the TSS to ensure that it details the possible
options the TOE supports for information about the number of audit records
that have been dropped, overwritten, etc. when the local storage for audit data
is full.

263. For distributed TOEs, the evaluator shall examine the TSS to ensure it
describes to which TOE components this SFR applies. Since this SFR is optional,
it might only apply to some TOE components and not all. This might lead to the
situation where all TOE components store their audit information themselves
but FAU_STG_EXT.2 is supported only by one of the components.

3.1.2.2. Guidance Documentation

264. The evaluator shall also ensure that the guidance documentation describes
all possible configuration options and the meaning of the result returned by the
TOE for each possible configuration. The description of possible configuration
options and explanation of the result shall correspond to those described in the
TSS.

265. The evaluator shall verify that the guidance documentation contains a
warning for the administrator about the loss of audit data when clearing the
local storage for audit records.

3.1.2.3. Tests

266. The evaluator shall verify that the numbers provided by the TOE according to
the selection for FAU_STG_EXT.2 are correct when performing the tests for
FAU_STG_EXT.1.5.

cPP_ND_v4.0-SD, 25-NOV-2025 73

267. For distributed TOEs, the evaluator shall verify the correct implementation of
counting of lost audit data for all TOE components that are supporting this
feature, according to the description in the TSS.

3.1.3. FAU_STG_EXT.3 Action in Case of Possible Audit Data Loss

268. This activity should be accomplished in conjunction with the testing of
FAU_STG_EXT.1.4 and FAU_STG_EXT.1.5.

3.1.3.1. TSS

269. The evaluator shall examine the TSS to ensure that it details how the Security
Administrator is warned before the local storage for audit data is full.

270. For distributed TOEs, the evaluator shall examine the TSS to ensure it
describes to which TOE components this SFR applies and how each TOE
component implements this SFR. Since this SFR is optional, it might only apply
to some TOE components and not all. This might lead to the situation where all
TOE components store their audit information themselves but FAU_STG_EXT.3
is supported only by one of the components. In particular, the evaluator shall
verify that the TSS describes for every component supporting this functionality,
whether the warning is generated by the component itself or through another
component and name the corresponding component in the latter case. The
evaluator shall verify that the TSS makes clear any situations in which audit
records might be 'invisibly lost'.

3.1.3.2. Guidance Documentation

271. The evaluator shall also verify that the guidance documentation describes
how the Security Administrator is warned before the local storage for audit data
is full and how this warning is displayed or stored (since there is no guarantee
that an administrator session is running at the time the warning is issued, it is
very likely that it will be stored in the log files). The description in the guidance
documentation shall correspond to the description in the TSS.

3.1.3.3. Tests

272. The evaluator shall verify that a warning is issued by the TOE before the local
storage space for audit data is full.

273. For distributed TOEs, the evaluator shall verify the correct implementation of
display warning for local storage space for all TOE components that are
supporting this feature according to the description in the TSS. The evaluator
shall verify that each component that supports this feature according to the

cPP_ND_v4.0-SD, 25-NOV-2025 74

description in the TSS is capable of generating a warning itself or through
another component.

3.1.4. FCS_CKM.2 Cryptographic Key Distribution

3.1.4.1. TSS

274. The evaluator shall ensure that the TSS documents that the security strength
supported by the selected key distribution methods is sufficient for the security
strength of the keys distributed through those methods.

275. It is not necessary to identify the services that use each key distribution
method here. That information should be documented in the requirements for
the individual services and protocols that invoke key distribution.

3.1.4.2. Guidance Documentation

276. The evaluator shall verify that the AGD guidance instructs the administrator
how to configure the TOE to use the selected key distribution methods.

3.1.4.3. Tests

277. Specific testing for this component is covered by testing for the claimed
components in FCS_COP.1/KeyEncap, FCS_COP.1/KeyWrap, and the applicable
key establishment or key derivation mechanisms claimed under
FCS_CKM.1/AKG, FCS_CKM.5, FCS_CKM_EXT.8, or FCS_CKM_EXT.3.

3.2. Protection of the TSF (FPT)

3.2.1. FPT_ITT.1 Basic Internal TSF Data Transfer Protection

278. If the TOE is not a distributed TOE, then no evaluator action is necessary. For
a distributed TOE the evaluator carries out the activities below.

3.2.1.1. TSS

279. The evaluator shall examine the TSS to determine that, for all
communications between components of a distributed TOE, each
communications mechanism is identified in terms of the allowed protocols for
inter-component communication. The evaluator shall also confirm that all
protocols listed in the TSS for these inter-component communications are
specified and included in the requirements in the ST.

3.2.1.2. Guidance Documentation

cPP_ND_v4.0-SD, 25-NOV-2025 75

280. The evaluator shall confirm that the guidance documentation contains
instructions for establishing the relevant allowed communication channels and
protocols between each pair of authorised TOE components, and that it contains
recovery instructions should a connection be unintentionally broken.

3.2.1.3. Tests

281. The evaluator shall perform the following tests:

a. Test 1: The evaluator shall ensure that each communications channel
established using each protocol between each pair of distributed TOE
components is tested during the course of the evaluation, setting up
the connections as described in the guidance documentation and
verifying that communication is successful.

b. Test 2: The evaluator shall verify that for each communication
channel established between distributed TOE components, the
channel data is not sent in plaintext.

c. Test 3: Objective: This test is to ensure that the TOE reacts
appropriately to any connection outage or interruption of the route
between distributed TOE components.

The evaluator shall ensure that, for each different pair of non-
equivalent TOE component types, the connection is physically
interrupted for the following durations: i) a duration that exceeds the
TOE’s application layer timeout setting, ii) a duration that is shorter
than the application layer timeout but is of sufficient length to
interrupt the network link layer.

The evaluator shall verify that when physical connectivity is restored
between distributed TOE components, either communications are
appropriately protected, or the secure channel is terminated and the
registration process (as described in the FTP_TRP.1/Join) is re-
initiated, with the TOE generating adequate warnings to alert the
Security Administrator.

In the case that the TOE is able to detect when the cable is removed
from the device, another physical network device (e.g., a core switch)
shall be used to interrupt the connection between the components.

For a non-virtualized TOE, the interruption shall not be performed at
the virtual node (e.g., virtual switch) and must be physical in nature.

282. Further assurance activities are associated with the specific protocols
identified in the ST.

cPP_ND_v4.0-SD, 25-NOV-2025 76

3.3. Trusted Path/Channels (FTP)

3.3.1. FTP_TRP.1/Join Trusted Path

3.3.1.1. TSS

283. The evaluator shall examine the TSS to determine that the methods of joining
components to the TOE are identified, along with how communications with
those newly-joined components are protected, including identification of
whether the environment is required to provide confidentiality of the
communications or whether the registration data exchanged does not require
confidentiality. If the TSS asserts that registration data does not require
confidentiality protection, then the evaluator shall examine the justification
provided to confirm that.

284. The evaluator shall also check that all protocols listed in the TSS in support of
this process are included in the SFRs in the ST, and that if the ST uses
FTP_TRP.1/Join for the registration channel then this channel cannot be reused
as the normal inter-component communication channel (the latter channel must
meet FTP_ITC.1 or FPT_ITT.1).

285. The evaluator shall examine the TSS to confirm that sufficient information is
provided to determine the TOE actions in the case that the initial component
joining attempt fails.

3.3.1.2. Guidance Documentation

286. The evaluator shall examine the guidance documentation to confirm that it
contains instructions for establishing and using the enablement and registration
channel. The evaluator shall confirm that the guidance documentation clarifies
which TOE component initiates the communication. The evaluator shall confirm
that the guidance documentation contains recovery instructions should a
connection be unintentionally broken during the registration process.

287. In the case of a distributed TOE that relies on the operational environment to
provide security for some aspects of the registration channel security, there are
particular requirements on the Preparative Procedures as listed below.
(Reliance on the operational environment in this way is indicated in an ST by a
reference to operational guidance in the assignment in FTP_TRP.1.3/Join.) In
this case the evaluator shall examine the Preparative Procedures to confirm that
they:

a. Clearly state the strength of the authentication and encryption
provided by the registration channel itself and the specific
requirements on the environment used for joining TOE components
to the distributed TOE (e.g., where the environment is relied upon to

cPP_ND_v4.0-SD, 25-NOV-2025 77

prevent interception of sensitive messages, IP spoofing attempts,
man-in-the-middle attacks, or race conditions).

b. Identify what confidential values are transmitted over the enablement
channel (e.g., any keys, their lengths, and their purposes), use of any
non-confidential keys (e.g., where a developer uses the same key for
more than one device or across all devices of a type or family), and use
of any unauthenticated identification data (e.g., IP addresses, self-
signed certificates).

c. Highlight any situation in which a secret value/key may be
transmitted over a channel that uses a key of lower comparable
strength than the transmitted value/key. Comparable strength is
defined as the amount of work required to compromise the algorithm
or key and is typically expressed as ‘bits’ of security. The ST author
and evaluator shall consult NIST 800-57 Table 2 for further guidance
on comparable algorithm strength.

3.3.1.3. Tests

288. The evaluator shall perform the following tests:

a. Test 1: The evaluator shall ensure that the communications path for
joining components to the TSF is tested for each distinct (non-
equivalent) component type[4], setting up the connections as described
in the guidance documentation and verifying that communication is
successful. In particular the evaluator shall confirm that requirements
on environment protection for the registration process are consistent
with observations made on the test configuration (for example, a
requirement to isolate the TOE components from the Internet during
registration might be inconsistent with the need for a TOE component
to contact a license server). If no requirements on the registration
environment are identified as necessary to protect confidentiality,
then the evaluator shall confirm that the key used for registration can
be configured (following the instructions in the guidance
documentation) to be at least the same length as the key used for the
internal TSF channel that is being enabled. The evaluator shall
confirm that the key used for the channel is unique to the pair of TOE
components (this is done by identifying the relevant key during the
registration test: it is not necessary to examine the key value).

b. Test 2: The evaluator shall follow the guidance documentation to
ensure that the communication channel can be enabled by a Security
Administrator for all the TOE components identified in the guidance
documentation as capable of having the Security Administrator
initiate the channel.

cPP_ND_v4.0-SD, 25-NOV-2025 78

c. Test 3: The evaluator shall ensure that if the guidance documentation
states that the channel data is encrypted, then the data observed on
the channel is not plaintext.

289. Further assurance activities are associated with the specific protocols.

3.4. Communication (FCO)

3.4.1. FCO_CPC_EXT.1 Component Registration Channel Definition

290. If the TOE is not a distributed TOE, then no evaluator action is necessary. For
a distributed TOE the evaluator carries out the activities below. In carrying out
these activities the evaluator shall determine answers to the following
questions based on a combination of documentation analysis and testing
(possibly also using input from carrying out the Evaluation Activities for the
relevant registration channel, such as FTP_TRP.1/Join), and shall report the
answers.

a. What stops[5] a TOE component from successfully communicating with
other TOE components (in a way that enables it to participate as part
of the TOE) before it has been properly authenticated and becomes a
functional part of the distributed TOE?

b. What is the enablement step? (Describe what interface it uses, with a
reference to the relevant section and step in the operational
guidance).

i. What stops anybody other than a Security Administrator
from carrying out this step?

ii. How does the Security Administrator know that they are
enabling the intended TOE component to join?
(Identification of the joiner might be part of the enablement
action itself or might be part of secure channel
establishment, but it must prevent unintended joining of
components)

c. What stops a TOE component from successfully joining if the Security
Administrator has not carried out the enablement step; or,
equivalently, how does the distributed TOE ensure that an action by
an authentic Security Administrator is required before a component
can successfully join?

d. What stops a TOE component from carrying out the registration
process over a different, insecure channel?

e. If the FTP_TRP.1/Join channel type is selected in FCO_CPC_EXT.1.2
then how does the registration process, and its resulting secure

cPP_ND_v4.0-SD, 25-NOV-2025 79

channel, ensure that the transmitted data is protected from disclosure
and that it provides detection of modification?

f. Where the registration channel does not rely on protection of the
registration environment, does the registration channel provide a
sufficient level of protection (especially with regard to confidentiality)
for the data that passes over it?

g. Where the registration channel is subsequently used for normal
internal communication between TOE components (i.e. after the
joiner has completed registration), do any of the authentication or
encryption features of the registration channel result in use of a
channel that has weaker protection than the normal FPT_ITT.1
requirements for such a channel?

h. What is the disablement step? (Describe what interface it uses, with a
reference to the relevant section and step in the operational
guidance).

i. What stops a TOE component from successfully communicating with
other TOE components if the Security Administrator has carried out
the disablement step?

3.4.1.1. TSS

291. (Note: Section 3.4.1 lists questions for which the evaluator shall determine
and report answers through the combination of the TSS, Guidance
Documentation, and Tests Evaluation Activities.)

292. The evaluator shall examine the TSS to confirm that it:

a. Describes the method by which a Security Administrator enables and
disables communications between pairs of TOE components.

b. Describes the relevant details according to the type of channel in the
main selection made in FCO_CPC_EXT.1.2:

▪ First type: the TSS identifies the relevant SFR iteration that
specifies the type of channel being used

▪ Second type: the TSS (with support from the operational
guidance if selected in FTP_TRP.1.3/Join) provides details of
the channel and the mechanisms that it uses (and describes
how the process ensures that the key is unique to the pair of
components) – see also the Evaluation Activities for
FTP_TRP.1/Join.

293. The evaluator shall verify that if any aspects of the registration channel are
identified as not meeting FTP_ITC.1 or FPT_ITT.1, then the ST has also selected
the FTP_TRP.1/Join option in the main selection in FCO_CPC_EXT.1.2. If the

cPP_ND_v4.0-SD, 25-NOV-2025 80

registration channel is also to be used for other communications then
FTP_TRP.1/Join cannot be present in the ST.

3.4.1.2. Guidance Documentation

294. (Note: Section 3.4.1 lists questions for which the evaluator shall determine
and report answers through the combination of the TSS, Guidance
Documentation, and Tests Evaluation Activities.)

295. The evaluator shall examine the guidance documentation to confirm that it
contains instructions for enabling and disabling communications with any
individual component of a distributed TOE. The evaluator shall confirm that the
method of disabling is such that all other components will be prevented from
communicating with the component that is being removed from the TOE
(preventing the remaining components from either attempting to initiate
communications with the disabled component, or from responding to
communications from the disabled component).

296. The evaluator shall examine the guidance documentation to confirm that it
includes recovery instructions should a connection between TOE components
be unintentionally broken during the registration process.

297. If the TOE uses a registration channel for registering components to the TOE
(i.e., where the ST author uses the FTP_ITC.1/FPT_ITT.1 or FTP_TRP.1/Join
channel types in the main selection for FCO_CPC_EXT.1.2) then the evaluator
shall examine the Preparative Procedures to confirm that they:

a. describe the security characteristics of the registration channel (e.g.,
the protocol, keys and authentication data on which it is based) and
that they highlight any aspects which do not meet the requirements
for a steady-state inter-component channel (as in FTP_ITC.1 or
FPT_ITT.1)

b. identify any dependencies between the configuration of the
registration channel and the security of the subsequent inter-
component communications (e.g., where AES-256 inter-component
communications depend on transmitting 256-bit keys between
components and therefore rely on the registration channel being
configured to use an encryption key of equivalent length)

c. identify any aspects of the channel that can be modified by the
operational environment in order to improve the channel’s security,
and that they describe how this modification can be achieved (e.g.,
generating a new key pair, or replacing a default public key
certificate).

298. As background for the examination of the registration channel description, it
is noted that the requirements above are intended to ensure that administrators
can make an accurate judgement of any risks that arise from the default

cPP_ND_v4.0-SD, 25-NOV-2025 81

registration process. Examples would be the use of self-signed certificates (i.e.,
certificates that are not chained to an external or local Certification Authority),
manufacturer-issued certificates (where control over aspects such as
revocation, or which devices are issued with recognised certificates, is outside
the control of the operational environment), use of generic/non-unique keys
(e.g., where the same key is present on more than one instance of a device), or
well-known keys (i.e., where the confidentiality of the keys is not intended to be
strongly protected – note that this need not mean there is a positive action or
intention to publicise the keys).

299. In the case of a distributed TOE for which the ST author uses the
FTP_TRP.1/Join channel type in the main selection for FCO_CPC_EXT.1.2 and the
TOE relies on the operational environment to provide security for some aspects
of the registration channel security then there are additional requirements on
the Preparative Procedures as described in Section 3.4.1.2.

3.4.1.3. Tests

300. (Note: Section 3.4.1 lists questions for which the evaluator shall determine
and report answers through the combination of the TSS, Guidance
Documentation, and Tests Evaluation Activities.)

301. The evaluator shall perform the following tests:

a. Test 1a: the evaluator shall confirm that a TOE component that is not
currently a member of the distributed TOE cannot communicate with
any other component of the TOE until the non-member is enabled by a
Security Administrator, for each of the non-equivalent TOE
components[6], that it is required to communicate with (non-
equivalent TOE components are as defined in the minimum
configuration for the distributed TOE).

b. Test 1b: the evaluator shall confirm that after enablement, a TOE
component can only communicate with the other TOE components
that it has been enabled for. This includes testing that the enabled
communication is successful for the enabled TOE component pair, and
that communication remains unsuccessful with any other TOE
component for which communication has not been explicitly enabled.

Some TOEs may set up the registration channel before the enablement
step is carried out, but in such a case the separate registered-
components channel must not allow communications until after the
enablement step has been completed.

302. The evaluator shall repeat Tests 1a and 1b for each different type of
enablement process that can be used in the distributed TOE.

cPP_ND_v4.0-SD, 25-NOV-2025 82

c. Test 2: The evaluator shall separately disable each TOE component in
turn and ensure that the other TOE components cannot then
communicate with the disabled component, whether by attempting to
initiate communications with the disabled component, or by
responding to communication attempts from the disabled component.

d. Test 3: The evaluator shall perform the following tests according to
those that apply to the values of the main (outer) selection made in
the ST for FCO_CPC_EXT.1.2.

i. If the ST uses the first type of communication channel in the
selection list in FCO_CPC_EXT.1.2 then the evaluator shall
test the channel via the Evaluation Activities for FTP_ITC.1
or FPT_ITT.1 according to the second selection list in
FCO_CPC_EXT.1.2 (which is contained within the first type),
therefore the evaluator shall ensure that the test coverage
for these SFRs includes their usage in the registration
process.

ii. If the ST uses the second type of communication channel in
the selection in FCO_CPC_EXT.1.2 then the evaluator shall
test the channel via the Evaluation Activities for
FTP_TRP.1/Join.

iii. If the ST uses the ‘no channel’ selection, then no test is
required.

e. Test 4: The evaluator shall perform one of the following tests,
according to the TOE characteristics identified in its TSS and
operational guidance:

i. If the registration channel is not subsequently used for
inter-component communication, and in all cases where the
second selection in FCO_CPC_EXT.1.2 is made (i.e., using
FTP_TRP.1/Join) then the evaluator shall confirm that the
registration channel can no longer be used after the
registration process has completed, by attempting to use
the channel to communicate with each of the endpoints
after registration has completed.

ii. If the registration channel is subsequently used for inter-
component communication then the evaluator shall confirm
that any aspects identified in the operational guidance as
necessary to meet the requirements for a steady-state inter-
component channel (as in FTP_ITC.1 or FPT_ITT.1) can
indeed be carried out (e.g., there might be a requirement to
replace the default key pair and/or public key certificate).

cPP_ND_v4.0-SD, 25-NOV-2025 83

f. Test 5: For each aspect of the security of the registration channel that
operational guidance states can be modified by the operational
environment in order to improve the channel security (see AGD_PRE.1
refinement item 2 in (see the requirements on Preparative
Procedures in 3.4.1.2), the evaluator shall confirm, by following the
procedure described in the operational guidance, that this
modification can be successfully carried out.

cPP_ND_v4.0-SD, 25-NOV-2025 84

4. Evaluation Activities for Selection-Based
Requirements
4.1. Security Audit (FAU)

4.1.1. FAU_SAR.1 Audit Review

4.1.1.1. TSS

303. There are no TSS evaluation activities for this component.

4.1.1.2. Guidance Documentation

304. The evaluator shall review the AGD for the procedure on how to review the
audit records.

4.1.1.3. Tests

305. The evaluator shall verify that the audit records provide all of the
information specified in FAU_GEN.1 and that this information is suitable for
human interpretation. The evaluation activity for this requirement is performed
in conjunction with the evaluation activity for FAU_GEN.1.

4.1.2. FAU_GEN_EXT.1 Security Audit Data Generation for
Distributed TOE Components

306. For distributed TOEs, the requirements on TSS, Guidance Documentation and
Tests regarding FAU_GEN_EXT.1 are already covered by the corresponding
requirements for FAU_GEN.1.

4.1.3. FAU_STG_EXT.4 Protected Local Audit Event Storage for
Distributed TOEs and FAU_STG_EXT.5 Protected Remote Audit Event
Storage for Distributed TOEs

4.1.3.1. TSS

307. The evaluator shall examine the TSS to confirm that it describes which TOE
components store their security audit events locally and which send their
security audit events to other TOE components for local storage. For the latter,
the target TOE component(s) which store security audit events for other TOE

cPP_ND_v4.0-SD, 25-NOV-2025 85

components shall be identified. For every sending TOE component, the
corresponding receiving TOE component(s) need to be identified. For every
transfer of audit information between TOE components it shall be described
how the data is secured during transfer according to FTP_ITC.1 or FPT_ITT.1.

308. For each TOE component which does not store audit events locally by itself,
the evaluator shall confirm that the TSS describes how the audit information is
buffered before sending to another TOE component for local storage.

4.1.3.2. Guidance Documentation

309. The evaluator shall examine the guidance documentation to ensure that it
describes how the link between different TOE components is established if audit
data is exchanged between TOE components for local storage. The guidance
documentation shall describe all possible configuration options for local storage
of audit data and provide all instructions how to perform the related
configuration of the TOE components.

310. The evaluator shall also ensure that the guidance documentation describes
for every TOE component which does not store audit information locally how
audit information is buffered before transmission to other TOE components.

4.1.3.3. Tests

311. For at least one of each type of distributed TOE components (sensors, central
nodes, etc.), the following tests shall be performed using distributed TOEs.

a. Test 1: For each type of TOE component, the evaluator shall perform a
representative subset of auditable actions and ensure that these
actions cause the generation of appropriately formed audit records.
Generation of such records can be observed directly on the
distributed TOE component (if there is an appropriate interface), or
indirectly after transmission to a central audit log storage location.

b. Test 2: For each type of TOE component that, in the evaluated
configuration, is capable of transmitting audit information to the
external audit server (as specified in FTP_ITC.1), the evaluator shall
configure a trusted channel and confirm that audit records generated
as a result of actions taken by the evaluator are securely transmitted
to the external audit server. It is sufficient to observe negotiation and
establishment of the secure channel with the TOE component and the
subsequent transmission of encrypted data to confirm this
functionality. Alternatively, the following steps shall be performed:
The evaluator shall induce audit record transmission, then review the
packet capture around the time of transmission and verify that no
audit data has been transmitted in the clear.

cPP_ND_v4.0-SD, 25-NOV-2025 86

c. Test 3: For each type of TOE component that, in the evaluated
configuration, is capable of transmitting audit information to another
TOE component (as specified in FTP_ITT.1 or FTP_ITC.1, respectively),
the evaluator shall configure a secure channel and confirm that audit
records generated as a result of actions taken by the evaluator have
been securely transmitted. It is sufficient to observe negotiation and
establishment of the secure channel with the TOE component and the
subsequent transmission of encrypted data to confirm this
functionality. Alternatively, the following steps shall be performed:
The evaluator shall induce audit record transmission, then review the
packet capture around the time of transmission and verify that no
audit data is transmitted in the clear.

312. While performing these tests, the evaluator shall verify that the TOE
behaviour observed during testing is consistent with the descriptions provided
in the TSS and the Guidance Documentation. Depending on the TOE
configuration, there might be a large number of different possible
configurations. In such cases, it is acceptable to perform subset testing,
accompanied by an equivalency argument describing the evaluator’s sampling
methodology.

4.2. Cryptographic Support (FCS)

4.2.1. FCS_COP.1/AEAD Cryptographic Operation – Authenticated
Encryption with Associated Data

4.2.1.1. TSS

313. The evaluator shall examine the TSS to ensure that it describes the
construction of any IVs, nonces, and tags in conformance with the relevant
specifications.

314. If a CCM mode algorithm is selected, then the evaluator shall examine the
TOE summary specification to confirm that it describes how the nonce is
generated and that the same nonce is never reused to encrypt different plaintext
pairs under the same key.

315. If a GCM mode algorithm is selected, then the evaluator shall examine the
TOE summary specification to confirm that it describes how the IV is generated
and that the same IV is never reused to encrypt different plaintext pairs under
the same key. The evaluator shall also confirm that for each invocation of GCM,
the length of the plaintext is at most (232)-2 blocks

4.2.1.2. Guidance Documentation

cPP_ND_v4.0-SD, 25-NOV-2025 87

316. There are no additional Guidance evaluation activities for this component.

4.2.1.3. Tests

317. The following tests may require the developer to provide access to a test
platform that provides the evaluator with tools that are typically not found on
factory products.

318. The following tests are conditional based upon the selections made in the
SFR. The evaluator shall perform the following test or witness respective tests
executed by the developer. The tests must be executed on a platform that is as
close as practically possible to the operational platform (but which may be
instrumented in terms of, for example, use of a debug mode). Where the test is
not carried out on the TOE itself, the test platform shall be identified and the
differences between test environment and TOE execution environment shall be
described.

AES-CCM

319. To test the TOE’s implementation of AES-CCM authenticated encryption
functionality the evaluator shall perform the Algorithm Functional Tests
described below using the following input parameters:

o Key Size [128, 256] bits

o Associated data size [0-65536] bits in increments of 8

o Payload size [0-256] bits in increments of 8

o IV/Nonce size [64-104] bits in increments of 8

o Tag size [32-128] bits in increments of 16

Algorithm Functional Test

320. Unless otherwise specified, the following tests should use random data, a tag
size of 128 bits, IV/Nonce size of 104 bits, payload size of 256 bits, and
associated data size of 256 bits. If any of these values are not supported, any
supported value may be used. The evaluator shall compare the output from each
test case against results generated by a known-good implementation with the
same input parameters.

Variable Associated Data Test

321. For each claimed key size, and for each supported associated data size from 0
through 256 bits in increments of 8 bits, the TOE must be tested by encrypting
10 test cases using all random data. In addition, for each key size, the TOE must

cPP_ND_v4.0-SD, 25-NOV-2025 88

be tested by encrypting 10 cases with associated data lengths of 65536 bits, if
supported.

Variable Payload Test

322. For each claimed key size, and for each supported payload size from 0
through 256 bits in increments of 8 bits, the TOE must be tested by encrypting
10 test cases using all random data.

Variable Tag Test

323. For each claimed key size, and for each supported tag size from 32 through
128 bits in increments of 16 bits, the TOE must be tested by encrypting 10 test
cases using all random data.

Decryption Verification Test

324. For each claimed key size, for each supported associated data size from 0
through 256 bits in increments of 8 bits, for each supported payload size from 0
through 256 bits in increments of 8 bits, for each supported IV/Nonce size from
64 through 104 bits in increments of 8 bits, and for each supported tag size from
32 through 128 bits in increments of 16 bits, the TOE must be tested by
decrypting 10 test cases using all random data.

AES-GCM

325. To test the TOE’s implementation of AES-GCM authenticated encryption
functionality the evaluator shall perform the Encryption Algorithm Functional
Tests and Decryption Algorithm Functional Tests as described below using the
following input parameters:

o Key Size [128, 256] bits

o Associated data size [0-65536] bits

o Payload size [0-65536] bits

o IV size [96] bits

o Tag size [96, 104, 112, 120, 128] bits

Encryption Algorithm Functional Tests

326. The evaluator shall generate 15 test cases using random data for each
combination of the above parameters as follows:

o Each claimed key size,

cPP_ND_v4.0-SD, 25-NOV-2025 89

o Each supported tag size,

o Four supported non-zero payload sizes, such that two are multiples of
128 bits and two are not multiples of 128 bits,

o Four supported non-zero associated data sizes, such that two are
multiples of 128 bits and two are not multiples of 128 bits, and

o An associated data size of zero, if supported.

327. Note that the IV size is always 96 bits.

328. The evaluator shall compare the output from each test case against results
generated by a known- good implementation with the same input parameters.

Decryption Algorithm Functional Tests

329. The evaluator shall test the authenticated decrypt functionality of AES-GCM
by supplying 15 test cases for the supported combinations of the parameters as
described above. For each parameter combination the evaluator shall introduce
an error into either the Ciphertext or the Tag such that approximately half of the
cases are correct and half the cases contain errors.

4.2.2. FCS_COP.1/KeyEncap Cryptographic Operation - Key
Encapsulation

4.2.2.1. TSS

330. The evaluator shall ensure that the TSS documents that the selection of the
key size is sufficient for the security strength of the key encapsulated.

331. The evaluator shall examine the TSS to verify that any one-time values such
as nonces or masks are constructed and used in accordance with the relevant
standards.

4.2.2.2. Guidance Documentation

332. There are no additional Guidance evaluation activities for this component.

4.2.2.3. Tests

333. The following tests may require the developer to provide access to a test
platform that provides the evaluator with tools that are typically not found on
factory products.

334. The following tests are conditional based upon the selections made in the
SFR. The evaluator shall perform the following test or witness respective tests

cPP_ND_v4.0-SD, 25-NOV-2025 90

executed by the developer. The tests must be executed on a platform that is as
close as practically possible to the operational platform (but which may be
instrumented in terms of, for example, use of a debug mode). Where the test is
not carried out on the TOE itself, the test platform shall be identified and the
differences between test environment and TOE execution environment shall be
described.

ML-KEM Key Encapsulation

335. To test the TOE’s implementation of ML-KEM key
encapsulation/decapsulation, the evaluator shall perform the Encapsulation
Test and the Decapsulation Test using the following input parameters:

o Encapsulation Parameters:

▪ Parameter set [ML-KEM-1024]

▪ Previously generated encapsulation key (ek)

▪ Random value (m) [32 bytes]

o Decapsulation Parameters:

▪ Parameter set [ML-KEM-1024]

▪ Previously generated decapsulation key (dk)

▪ Previously generated ciphertext (c) [32 bytes]

Encapsulation Test

336. For each supported parameter set the evaluator shall generate 25 test cases
consisting of an encapsulation key ek and random value m. For each test case
the valuator shall require the implementation under test to generate the
corresponding shared secret k and ciphertext c. To determine correctness, the
evaluator shall compare the resulting values with those generated using a
known-good implementation using the same inputs.

Encapsulation Key Check (if supported)

337. The evaluator shall generate 10 encapsulation keys such that:

o Five of the encapsulation keys are valid, and

o Five of the encapsulation keys are modified such that a value in the
noisy linear system is encoded into the key as a value greater than Q.

338. The evaluator shall invoke the TOE’s Encapsulation Key Check functionality
to determine the validity of the 10 keys. The unmodified keys should be
determined valid, and the modified keys should be determined invalid.

cPP_ND_v4.0-SD, 25-NOV-2025 91

Decapsulation Key Check (if supported)

339. The evaluator shall generate 10 decapsulation keys such that:

o Five of the decapsulation keys are valid, and

o Five of the decapsulation keys are modified such that the
concatenated values ek||H(ek) will no longer match by modifying
H(ek) to be a different value.

340. The evaluator shall invoke the TOE’s Decapsulation Key Check functionality
to determine the validity of the 10 keys. The unmodified keys should be
determined valid, and the modified keys should be determined invalid.

Decapsulation Test

341. For each supported parameter set the evaluator shall use a single previously
generated decapsulation key dk and generate 10 test cases consisting of valid
and invalid ciphertexts c. For each test case the evaluator shall require the
implementation under test to generate the corresponding shared secret k
whether or not the ciphertext is valid. To determine correctness, the evaluator
shall compare the resulting values with those generated using a known-good
implementation using the same inputs.

4.2.3. FCS_COP.1/KeyWrap Cryptographic Operation - Key Wrapping

4.2.3.1. TSS

342. The evaluator shall ensure that the TSS documents that the selection of the
key size is sufficient for the security strength of the key wrapped.

343. The evaluator shall examine the TSS to ensure that it describes the
construction of any IVs, nonces, and MACs in conformance with the relevant
specifications.

4.2.3.2. Guidance Documentation

344. There are no additional Guidance evaluation activities for this component.

4.2.3.3. Tests

345. For tests of AES-GCM and AES-CCM, see testing for FCS_COP.1/AEAD.

346. The following tests are conditional based upon the selections made in the
SFR. The evaluator shall perform the following test or witness respective tests
executed by the developer. The tests must be executed on a platform that is as

cPP_ND_v4.0-SD, 25-NOV-2025 92

close as practically possible to the operational platform (but which may be
instrumented in terms of, for example, use of a debug mode). Where the test is
not carried out on the TOE itself, the test platform shall be identified and the
differences between test environment and TOE execution environment shall be
described.

AES-KW

347. To test the TOE’s ability to wrap keys using AES in Key Wrap mode the
evaluator shall perform the Algorithm Functional Tests using the following
input parameters:

o Key size [256] bits

o Keyword cipher type [cipher, inverse]

o Payload sizes [128-4096] bits by 64s

Algorithm Functional Test

348. The evaluator shall generate 100 encryption test cases using random data for
each combination of claimed key size, keyword cipher type, and six supported
payload sizes such that the payload sizes include the minimum, the maximum,
two that are divisible by 128, and two that are not divisible by 128.

349. The results shall be compared with those generated by a known-good
implementation using the same inputs.

350. The evaluator shall generate 100 decryption test cases using the same
parameters as above, but with 20 of each 100 test cases having modified
ciphertext to produce an incorrect result. To determine correctness, the
evaluator shall confirm that the results correspond as expected for both the
modified and unmodified values.

AES-KWP

351. To test the TOE’s ability to wrap keys using AES in Key Wrap with Padding
mode with padding the evaluator shall perform the Algorithm Functional Tests
using the following input parameters:

o Key size [256] bits

o Keyword cipher type [cipher, inverse]

o Payload sizes [8-4096] bits by 8s

Algorithm Functional Test

cPP_ND_v4.0-SD, 25-NOV-2025 93

352. The evaluator shall generate 100 encryption test cases using random data for
each combination of claimed key size, keyword cipher type, and six supported
payload sizes such that the payload sizes include the minimum, the maximum,
two that are divisible by 128, and two that are not divisible by 128.

353. The results shall be compared with those generated by a known-good
implementation using the same inputs.

354. The evaluator shall generate 100 decryption test cases using the same
parameters as above, but with 20 of each 100 test cases having modified
ciphertext to produce an incorrect result. To determine correctness, the
evaluator shall confirm that the results correspond as expected for both the
modified and unmodified values.

4.2.4. FCS_COP.1/SKC Cryptographic Operation - Symmetric Key
Cryptography

4.2.4.1. TSS

355. The evaluator shall examine the TSS to ensure that it describes the
construction of any IVs, tweak values, and counters in conformance with the
relevant specifications.

356. If XTS-AES is claimed then the evaluator shall examine the TSS to verify that
the TOE creates full-length keys by methods that ensure that the two key halves
are different and independent.

357. The evaluator shall examine the TSS to ensure it identifies the key size(s) and
mode(s) supported by the TOE for data AES encryption/decryption.

4.2.4.2. Guidance Documentation

358. The evaluator shall verify that the AGD guidance instructs the administrator
on how to configure the TOE to use the selected mode(s) and key size(s) for AES
encryption/decryption.

4.2.4.3. Tests

AES-CBC

359. To test the TOE’s ability to encrypt/decrypt data using AES in CBC mode, the
evaluator shall perform Algorithm Functional Tests and Monte Carlo Tests using
the following input parameters:

o Key size [128, 256] bits

o Direction [encryption, decryption]

cPP_ND_v4.0-SD, 25-NOV-2025 94

Algorithm Functional Test

360. Algorithm Functional Tests are designed to verify the correct operation of
the logical components of the algorithm implementation under normal
operation using different block sizes. For AES-CBC, there are two types of AFTs:

Known-Answer Tests

361. For each combination of direction and claimed key size, the TOE must be
tested using the GFSBox, KeySbox, VarTxt, and VarKey test cases listed in
Appendixes B through E of The Advanced Encryption Standard Algorithm
Validation Suite (AESAVS), NIST, 15 November 2002.

Multi-Block Message Tests

362. For each combination of direction and claimed key size, the TOE must be
tested against 10 test cases consisting of a random IV, random key, and random
plaintext/ciphertext. The plaintext/ciphertext starts with a length of 16 bytes
and increases by 16 bytes for each test case until reaching 160 bytes.

Monte Carlo Tests

363. Monte Carlo tests are intended to test the implementation under strenuous
conditions. The TOE must process the test cases according to the following
algorithm once for each combination of direction and key size:

Key[0] = Key

IV[0] = IV

PT[0] = PT

for i = 0 to 99 {

 Output Key[i], IV[i], PT[0]

 for j = 0 to 999 {

 if (j == 0) {

 CT[j] = AES-CBC-Encrypt(Key[i], IV[i], PT[j])

 PT[j+1] = IV[i]

 } else {

 CT[j] = AES-CBC-Encrypt(Key[i], PT[j])

 PT[j+1] = CT[j-1]

 }

 }

 Output CT[j]

 AES_KEY_SHUFFLE(Key, CT)

 IV[i+1] = CT[j]

cPP_ND_v4.0-SD, 25-NOV-2025 95

 PT[0] = CT[j-1]

}

where AES_KEY_SHUFFLE is defined as:

If (keylen = 128)

 Key[i+1] = Key[i] xor MSB(CT[j], 128)

If (keylen = 192)

 Key[i+1] = Key[i] xor (LSB(CT[j-1], 64) || MSB(CT[j], 128))

If (keylen = 256)

 Key[i+1] = Key[i] xor (MSB(CT[j-1], 128) || MSB(CT[j], 128))

The above pseudocode is for encryption. For decryption, swap all instances of CT
and PT.

The initial IV, key, and plaintext/ciphertext should be random.

The evaluator shall test the decrypt functionality using the same test as above,
exchanging CT and PT, and replacing AES-CBC-Encrypt with AES-CBC-Decrypt.

XTS-AES

364. To test the TOE’s ability to encrypt/decrypt data using AES in XTS mode, the
evaluator shall perform the Single Data Unit Test and the Multiple Data Unit
Test using the following input parameters:

o Direction [encryption, decryption]

o Key size [512] bits

o Tweak value format [128-bit hex string, data unit sequence number]

Single Data Unit Test

365. For each combination of claimed key size, direction, and supported tweak
value format, the evaluator shall generate 50 test cases consisting of random
payload data. The payload data size is determined randomly for each test case
from supported values within the range [128-65536] bits. The payload size and
data unit size must be equal.

Multiple Data Unit Test

366. For each combination of claimed key size, direction, and supported tweak
value format, the evaluator shall generate 50 test cases consisting of random

cPP_ND_v4.0-SD, 25-NOV-2025 96

payload data. The payload data size is determined randomly for each test case
from supported values within the range [128-65536] bits. Likewise, the data
unit size is determined randomly for each test case from supported values
within the range [128-65535] bits. The payload size and data unit size must not
be equal.

367. The evaluator shall verify the correctness of the TSF’s implementation by
comparing values generated by the TSF with those generated by a known good
implementation using the same input parameters.

AES-CTR

368. To test the TOE’s ability to encrypt/decrypt data using AES in CTR mode, the
evaluator shall perform the Algorithm Functional Test and the Counter Test
using the following input parameters:

o Direction [encryption, decryption]

o Key size [128, 256] bits

Algorithm Functional Tests

369. Algorithm Functional Tests are designed to verify the correct operation of
the logical components of the algorithm implementation under normal
operation using different block sizes. For AES-CTR, there are three types of
AFTs:

Known-Answer Tests

370. For each combination of direction and claimed key size, the TOE must be
tested using the GFSBox, KeySbox, VarTxt, and VarKey test cases listed in
Appendixes B through E of The Advanced Encryption Standard Algorithm
Validation Suite (AESAVS), NIST, 15 November 2002.

Single Block Message Tests

371. For each combination of direction and claimed key, the evaluator shall
generate 10 test cases with a data size of 128 bits.

Partial Block Message Tests

372. Monte Carlo tests are intended to test the implementation under strenuous
conditions. The TOE must process the test cases according to the following
algorithm once for each combination of direction and key size:

cPP_ND_v4.0-SD, 25-NOV-2025 97

373. For each combination of direction and claimed key, the evaluator shall
generate five test cases such that the data size is not a multiple of 128 bits.

374. The evaluator shall verify the correctness of the TSF’s implementation by
comparing values generated by the TSF with those generated by a known good
implementation using the same input parameters.

Counter Test

375. The evaluator shall generate a single message of 1000 blocks (128000 bits)
and either encrypt or decrypt it. Back-compute the IVs used. Verify that they are
unique and increasing (encryption) or decreasing (decryption).

4.2.5. FCS_COP.1/CMAC Cryptographic Operation - CMAC

4.2.5.1. TSS

376. The evaluator shall examine the TSS to determine that it specifies the
cryptographic algorithm and 128 bit key size supported by the TOE for CMAC.

4.2.5.2. Guidance Documentation

377. There are no additional Guidance evaluation activities for this component.

4.2.5.3. Tests

CMAC Generation Test

378. To test the generation capability of AES-CMAC, the evaluator shall provide to
the TSF, for each key length-message length-CMAC length tuple (in bytes), a set
of eight arbitrary key-plaintext tuples that will result in the generation of a
known MAC value when encrypted. The evaluator shall then verify that the
correct MAC was generated in each case.

CMAC Verification Test

379. To test the verification capability of AES-CMAC, the evaluator shall provide to
the TSF, for each key length-message length-CMAC length tuple (in bytes), a set
of 20 arbitrary key-MAC tuples that will result in the generation of known
messages when verified. The evaluator shall then verify that the correct
message was generated in each case.

380. The following information should be used by the evaluator to determine the
key length-message length-CMAC length tuples that should be tested:

cPP_ND_v4.0-SD, 25-NOV-2025 98

Key length: Values will include the following:

 16

Message length: Values will include the following:

 0 (optional)

 Largest value supported by the implementation (no greater than 65536)

 Two values divisible by 16

 Two values not divisible by 16

CMAC length:

 Smallest value supported by the implementation (no less than 1)

381. 16

 Any supported CMAC length between the minimum and maximum values

4.2.6. FCS_RBG.2 Random Bit Generation (External Seeding - VS
platform)

381. The evaluator shall examine the entropy documentation required by
FCS_RBG.1 to verify that it identifies, for each DRBG function implemented by
the TOE, the TSF external interface used to seed the TOE’s DRBG. The evaluator
shall verify that this includes the amount of sampled data and the min-entropy
rate of the sampled data such that it can be determined that sufficient entropy
can be made available for the highest strength keys that the TSF can generate
(e.g., 256 bits). If the seed data cannot be assumed to have full entropy (e.g., the
min-entropy of the sampled bits is less than 1), the evaluator shall ensure that
the entropy documentation describes the method by which the TOE estimates
the amount of entropy that has been accumulated to ensure that sufficient data
is collected and any conditioning that the TSF applies to the output data to
create a seed of sufficient size with full entropy.

4.2.6.1. TSS

FCS_RBG.2.1

382. There are no additional TSS evaluation activities for this component.

4.2.6.2. Guidance Documentation

FCS_RBG.2.1

383. There are no additional Guidance evaluation activities for this component.

4.2.6.3. Tests

cPP_ND_v4.0-SD, 25-NOV-2025 99

FCS_RBG.2.1

384. There are no test activities for this component.

4.2.7. FCS_RBG.3 Random Bit Generation (Internal Seeding - Single
Source)

385. The evaluator shall examine the entropy documentation required by
FCS_RBG.1 to verify that it identifies, for each DRBG function implemented by
the TOE, the TSF entropy source used to seed the TOE’s DRBG. The evaluator
shall verify that this includes the amount of sampled data and the min-entropy
rate of the sampled data such that it can be determined that sufficient entropy
can be made available for the highest strength keys that the TSF can generate
(e.g., 256 bits). If the seed data cannot be assumed to have full entropy (e.g., the
min-entropy of the sampled bits is less than 1), the evaluator shall ensure that
the entropy documentation describes the method by which the TOE estimates
the amount of entropy that has been accumulated to ensure that sufficient data
is collected and any conditioning that the TSF applies to the output data to
create a seed of sufficient size with full entropy.

4.2.7.1. TSS

FCS_RBG.3.1

386. There are no additional TSS evaluation activities for this component.

4.2.7.2. Guidance Documentation

FCS_RBG.3.1

387. There are no additional Guidance evaluation activities for this component.

4.2.7.3. Tests

FCS_RBG.3.1

388. There are no test activities for this component.

4.2.8. FCS_RBG.4 Random Bit Generation (Internal Seeding - Multiple
Sources)

389. The evaluator shall examine the entropy documentation required by
FCS_RBG.1 to verify that it identifies, for each DRBG function implemented by

cPP_ND_v4.0-SD, 25-NOV-2025 100

the TOE, each TSF entropy source used to seed the TOE’s DRBG. The evaluator
shall verify that this includes the amount of sampled data and the min-entropy
rate of the sampled data from each data source.

4.2.8.1. TSS

FCS_RBG.4.1

390. There are no additional TSS evaluation activities for this component.

4.2.8.2. Guidance Documentation

FCS_RBG.4.1

391. There are no additional Guidance evaluation activities for this component.

4.2.8.3. Tests

FCS_RBG.4.1

392. There are no test activities for this component.

4.2.9. FCS_RBG.5 Random Bit Generation (Combining Entropy
Sources)

393. Using the entropy sources specified in FCS_RBG.4, the evaluator shall
examine the entropy documentation required by FCS_RBG.1 to verify that it
describes the method by which the various entropy sources are combined into a
single seed. This should include an estimation of the rate at which each noise
source outputs data and whether this is dependent on any system-specific
factors so that each source’s relative contribution to the overall entropy is
understood. The evaluator shall verify that the resulting combination of
sampled data and the min-entropy rate of the sampled data is described in
sufficient detail to determine that sufficient entropy can be made available for
the highest strength keys that the TSF can generate (e.g., 256 bits). If the seed
data cannot be assumed to have full entropy (e.g., the min-entropy of the
sampled bits is less than 1), the evaluator shall ensure that the entropy
documentation describes the method by which the TOE estimates the amount of
entropy that has been accumulated to ensure that sufficient data is collected and
any conditioning that the TSF applies to the output data to create a seed of
sufficient size with full entropy.

4.2.9.1. TSS

cPP_ND_v4.0-SD, 25-NOV-2025 101

FCS_RBG.5.1

394. There are no additional TSS evaluation activities for this component.

4.2.9.2. Guidance Documentation

FCS_RBG.5.1

395. There are no additional Guidance evaluation activities for this component.

4.2.9.3. Tests

FCS_RBG.5.1

396. There are no test activities for this component.

4.2.10. FCS_COP.1/XOF Extendable-Output Function

4.2.10.1. TSS

FCS_COP.1.1/XOF

397. There are no additional TSS evaluation activities for this component.

4.2.10.2. Guidance Documentation

FCS_COP.1.1/XOF

398. There are no additional Guidance evaluation activities for this component.

4.2.10.3. Tests

FCS_COP.1.1/XOF

399. To test SHAKE-128 or SHAKE-256 the evaluator shall collect the input sizes
allowed by the implementation, [0-65536] and the output sizes allowed by the
implementation, [16-65536] and compare the results against a known good
implementation.

400. For the variable length inputs, the evaluator shall test the following:

a. Every message length up to the rate (1600 – 2*{128, 256})

b. About 100 random message lengths greater than the rate

cPP_ND_v4.0-SD, 25-NOV-2025 102

c. All have an output length of {128, 256}

401. For variable length outputs, the evaluator shall test the following:

a. Minimum output length,

b. Maximum output length,

c. 510 other random output lengths (for a total of 512 tests)

d. All have an input length of {128, 256}

4.2.11. FCS_IPSEC_EXT.1 IPsec Protocol

4.2.11.1. TSS

FCS_IPSEC_EXT.1.1

402. The evaluator shall examine the TSS and determine that it describes what
takes place when a packet is processed by the TOE, e.g., the algorithm used to
process the packet. The TSS describes how the SPD is implemented and the
rules for processing both inbound and outbound packets in terms of the IPsec
policy. The TSS describes the rules that are available and the resulting actions
available after matching a rule. The TSS describes how those rules and actions
form the SPD in terms of the BYPASS (e.g., no encryption), DISCARD (e.g., drop
the packet), and PROTECT (e.g., encrypt the packet) actions defined in RFC
4301.

403. As noted in Section 4.4.1 of RFC 4301, the processing of entries in the SPD is
non-trivial and the evaluator shall determine that the description in the TSS is
sufficient to determine which rules will be applied given the rule structure
implemented by the TOE. For example, if the TOE allows specification of ranges,
conditional rules, etc., the evaluator shall determine that the description of rule
processing (for both inbound and outbound packets) is sufficient to determine
the action that will be applied, especially in the case where two different rules
may apply. This description shall cover both the initial packets (that is, no SA is
established on the interface or for that particular packet) as well as packets that
are part of an established SA.

FCS_IPSEC_EXT.1.2

404. None.

FCS_IPSEC_EXT.1.3

cPP_ND_v4.0-SD, 25-NOV-2025 103

405. The evaluator shall check the TSS to ensure it states that the VPN can be
established to operate in transport mode and/or tunnel mode (as identified in
FCS_IPSEC_EXT.1.3).

FCS_IPSEC_EXT.1.4

406. The evaluator shall examine the TSS to verify that the selected algorithms are
implemented. In addition, the evaluator shall ensure that the SHA-based HMAC
algorithm conforms to the algorithms specified in FCS_COP.1/KeyedHash
Cryptographic Operations (for keyed-hash message authentication) and if the
SHA-based HMAC function truncated output is utilised it must also be described.

FCS_IPSEC_EXT.1.5

407. The evaluator shall examine the TSS to verify that IKEv1 and/or IKEv2 are
implemented.

408. For IKEv1 implementations, the evaluator shall examine the TSS to ensure
that, in the description of the IPsec protocol, it states that aggressive mode is
not used for IKEv1 Phase 1 exchanges, and that only main mode is used. It may
be that this is a configurable option.

FCS_IPSEC_EXT.1.6

409. The evaluator shall ensure the TSS identifies the algorithms used for
encrypting the IKEv1 and/or IKEv2 payload, and that the algorithms chosen in
the selection of the requirement are included in the TSS discussion.

FCS_IPSEC_EXT.1.7

410. The evaluator shall ensure the TSS identifies the lifetime configuration
method used for limiting the IKEv1 Phase 1 SA lifetime and/or the IKEv2 SA
lifetime. The evaluator shall verify that the selection made here corresponds to
the selection in FCS_IPSEC_EXT.1.7.

FCS_IPSEC_EXT.1.8

411. The evaluator shall ensure the TSS identifies the lifetime configuration
method used for limiting the IKEv1 Phase 2 SA lifetime and/or the IKEv2 Child
SA lifetime. The evaluator shall verify that the selection made here corresponds
to the selection in FCS_IPSEC_EXT.1.8.

FCS_IPSEC_EXT.1.9

cPP_ND_v4.0-SD, 25-NOV-2025 104

412. The evaluator shall check to ensure that, for each DH group supported, the
TSS describes the process for generating "x". The evaluator shall verify that the
TSS indicates that the random number generated that meets the requirements
in this PP is used, and that the length of "x" meets the stipulations in the
requirement.

FCS_IPSEC_EXT.1.10

413. If the first selection is chosen, the evaluator shall check to ensure that, for
each DH group supported, the TSS describes the process for generating each
nonce. The evaluator shall verify that the TSS indicates that the random number
generated that meets the requirements in this PP is used, and that the length of
the nonces meet the stipulations in the requirement.

414. If the second selection is chosen, the evaluator shall check to ensure that, for
each PRF hash supported, the TSS describes the process for generating each
nonce. The evaluator shall verify that the TSS indicates that the random number
generated that meets the requirements in this PP is used, and that the length of
the nonces meet the stipulations in the requirement.

FCS_IPSEC_EXT.1.11

415. The evaluator shall check to ensure that the DH groups specified in the
requirement are listed as being supported in the TSS. If there is more than one
DH group supported, the evaluator shall check to ensure the TSS describes how
a particular DH group is specified/negotiated with a peer.

FCS_IPSEC_EXT.1.12

416. The evaluator shall check that the TSS describes the potential strengths (in
terms of the number of bits in the symmetric key) of the algorithms that are
allowed for the IKE and ESP exchanges. The TSS shall also describe the checks
that are done when negotiating IKEv1 Phase 2 and/or IKEv2 CHILD_SA suites to
ensure that the strength (in terms of the number of bits of key in the symmetric
algorithm) of the negotiated algorithm is less than or equal to that of the IKE SA
this is protecting the negotiation.

FCS_IPSEC_EXT.1.13

417. The evaluator shall ensure that the TSS identifies RSA and/or ECDSA as being
used to perform peer authentication. The description must be consistent with
the algorithms as specified in FCS_COP.1/SigVer Cryptographic Operation -
Signature Verification.

418. If pre-shared keys are chosen in the selection, the evaluator shall check to
ensure that the TSS describes how pre-shared keys are established and used in

cPP_ND_v4.0-SD, 25-NOV-2025 105

authentication of IPsec connections. The description in the TSS shall also
indicate how pre-shared key establishment is accomplished for TOEs that can
generate a pre-shared key as well as TOEs that simply use a pre-shared key.

FCS_IPSEC_EXT.1.14

419. The evaluator shall ensure that the TSS describes how the TOE compares the
peer’s presented identifier to the reference identifier. This description shall
include which field(s) of the certificate are used as the presented identifier (DN,
Common Name, or SAN). If the TOE simultaneously supports the same identifier
type in the CN and SAN, the TSS shall describe how the TOE prioritizes the
comparisons (e.g., the result of comparison if CN matches but SAN does not). If
the location (e.g., CN or SAN) of non-DN identifier types must explicitly be
configured as part of the reference identifier, the TSS shall state this. If the ST
author assigned an additional identifier type, the TSS description shall also
include a description of that type and the method by which that type is
compared to the peer’s presented certificate, including what field(s) are
compared and which fields take precedence in the comparison.

4.2.11.2. Guidance Documentation

FCS_IPSEC_EXT.1.1

420. The evaluator shall examine the guidance documentation to verify it
instructs the Administrator how to construct entries into the SPD that specify a
rule for processing a packet. The description includes all three cases – a rule
that ensures packets are encrypted/decrypted, dropped, and flow through the
TOE without being encrypted. The evaluator shall determine that the
description in the guidance documentation is consistent with the description in
the TSS, and that the level of detail in the guidance documentation is sufficient
to allow the administrator to set up the SPD in an unambiguous fashion. This
includes a discussion of how ordering of rules impacts the processing of an IP
packet.

FCS_IPSEC_EXT.1.2

421. None.

FCS_IPSEC_EXT.1.3

422. The evaluator shall confirm that the guidance documentation contains
instructions on how to configure the connection in each mode selected.

FCS_IPSEC_EXT.1.4

cPP_ND_v4.0-SD, 25-NOV-2025 106

423. The evaluator shall check the guidance documentation to ensure it provides
instructions on how to configure the TOE to use the algorithms selected.

FCS_IPSEC_EXT.1.5

424. The evaluator shall check the guidance documentation to ensure it instructs
the administrator how to configure the TOE to use IKEv1 and/or IKEv2 (as
selected), and how to configure the TOE to perform NAT traversal (if selected).

425. If the IKEv1 Phase 1 mode requires configuration of the TOE prior to its
operation, the evaluator shall check the guidance documentation to ensure that
instructions for this configuration are contained within that guidance.

FCS_IPSEC_EXT.1.6

426. The evaluator shall ensure that the guidance documentation describes the
configuration of all selected algorithms in the requirement.

FCS_IPSEC_EXT.1.7

427. The evaluator shall verify that the values for SA lifetimes can be configured
and that the instructions for doing so are located in the guidance
documentation. If time-based limits are supported, configuring the limit may
lead to a rekey no later than the specified limit. For some implementations, it
may be necessary, though, to configure the TOE with a lower time value to
ensure a rekey is performed before the maximum SA lifetime of 24 hours is
exceeded (e.g., configure a time value of 23h 45min to ensure the actual rekey is
performed no later than 24h). The evaluator shall verify that the guidance
documentation allows the Administrator to configure the Phase 1 SA value of 24
hours or provides sufficient instruction about the time value to configure to
ensure the rekey is performed no later than the maximum SA lifetime of 24
hours. It is not permitted to configure a value of 24 hours if that leads to an
actual rekey after more than 24hours. Currently there are no values mandated
for the number of bytes, the evaluator just ensures that this can be configured if
selected in the requirement.

FCS_IPSEC_EXT.1.8

428. The evaluator shall verify that the values for SA lifetimes can be configured
and that the instructions for doing so are located in the guidance
documentation. If time-based limits are supported, configuring the limit may
lead to a rekey no later than the specified limit. For some implementations, it
may be necessary, though, to configure the TOE with a lower time value to
ensure a rekey is performed before the maximum SA lifetime of 8 hours is
exceeded (e.g., configure a time value of 7h 45min to ensure the actual rekey is

cPP_ND_v4.0-SD, 25-NOV-2025 107

performed no later than 8h). The evaluator shall verify that the guidance
documentation allows the Administrator to configure the Phase 2 SA value of 8
hours or provides sufficient instruction about the time value to configure to
ensure the rekey is performed no later than the maximum SA lifetime of 8
hours. It is not permitted to configure a value of 8 hours if that leads to an actual
rekey after more than 8 hours. Currently there are no values mandated for the
number of bytes, the evaluator just ensures that this can be configured if
selected in the requirement.

FCS_IPSEC_EXT.1.9 and FCS_IPSEC_EXT.1.10

429. None.

FCS_IPSEC_EXT.1.11

430. The evaluator shall ensure that the guidance documentation describes the
configuration of all algorithms selected in the requirement.

FCS_IPSEC_EXT.1.12

431. None.

FCS_IPSEC_EXT.1.13

432. The evaluator shall ensure the guidance documentation describes how to set
up the TOE to use certificates with RSA and/or ECDSA signatures and public
keys.

433. The evaluator shall check that the guidance documentation describes how
pre-shared keys are to be generated and established. The description in the
guidance documentation shall also indicate how pre-shared key establishment
is accomplished for TOEs that can generate a pre-shared key as well as TOEs
that simply use a pre-shared key.

434. The evaluator shall ensure that the guidance documentation describes how
to configure the TOE to connect to a trusted CA and ensure a valid certificate for
that CA is loaded into the TOE and marked “trusted”.

FCS_IPSEC_EXT.1.14

435. The evaluator shall ensure that the operational guidance describes all
supported identifiers, explicitly states whether the TOE supports the SAN
extension or not and includes detailed instructions on how to configure the
reference identifier(s) used to check the identity of peer(s). If the identifier
scheme implemented by the TOE does not guarantee unique identifiers, the

cPP_ND_v4.0-SD, 25-NOV-2025 108

evaluator shall ensure that the operational guidance provides a set of warnings
and/or CA policy recommendations that would result in secure TOE use.

4.2.11.3. Tests

FCS_IPSEC_EXT.1.1

436. The evaluator shall use the guidance documentation to configure the TOE to
perform the following tests:

a. Test 1: The evaluator shall configure the SPD such that there is a rule
for dropping a packet, encrypting a packet, and allowing a packet to
flow in plaintext. The selectors used in the construction of the rule
shall be different such that the evaluator can generate a packet and
send packets to the gateway with the appropriate fields (fields that
are used by the rule - e.g., the IP addresses, TCP/UDP ports) in the
packet header. The evaluator shall perform both positive and negative
test cases for each type of rule (e.g., a packet that matches the rule and
another that does not match the rule). The evaluator shall observe via
the audit trail, and packet captures that the TOE exhibited the
expected behaviour: appropriate packets were dropped, allowed to
flow without modification, encrypted by the IPsec implementation.

b. Test 2: The evaluator shall devise several tests that cover a variety of
scenarios for packet processing. As with Test 1, the evaluator shall
ensure both positive and negative test cases are constructed. These
scenarios must exercise the range of possibilities for SPD entries and
processing modes as outlined in the TSS and guidance documentation.
Potential areas to cover include rules with overlapping ranges and
conflicting entries, inbound and outbound packets, and packets that
establish SAs as well as packets that belong to established SAs. The
evaluator shall verify, via the audit trail and packet captures, for each
scenario that the expected behaviour is exhibited, and is consistent
with both the TSS and the guidance documentation.

FCS_IPSEC_EXT.1.2

437. The assurance activity for this element is performed in conjunction with the
activities for FCS_IPSEC_EXT.1.1.

438. The evaluator shall use the guidance documentation to configure the TOE to
perform the following tests:

a. Test 1: The evaluator shall configure the SPD such that there is a rule
for dropping a packet, encrypting a packet, and allowing a packet to
flow in plaintext. The evaluator may use the SPD that was created for
verification of FCS_IPSEC_EXT.1.1. The evaluator shall construct a

cPP_ND_v4.0-SD, 25-NOV-2025 109

network packet that matches the rule to allow the packet to flow in
plaintext and send that packet. The evaluator shall observe that the
network packet is passed to the proper destination interface with no
modification. The evaluator shall then modify a field in the packet
header; such that it no longer matches the evaluator-created entries
(there may be a “TOE created” final entry that discards packets that
do not match any previous entries). The evaluator shall send the
packet and observe that the packet was dropped.

FCS_IPSEC_EXT.1.3

439. The evaluator shall perform the following test(s) based on the selections
chosen:

a. Test 1: If tunnel mode is selected, the evaluator shall use the guidance
documentation to configure the TOE to operate in tunnel mode and
also configures a VPN peer to operate in tunnel mode. The evaluator
shall configure the TOE and the VPN peer to use any of the allowable
cryptographic algorithms, authentication methods, etc. to ensure an
allowable SA can be negotiated. The evaluator shall then initiate a
connection from the TOE to connect to the VPN peer. The evaluator
shall observe (for example, in the audit trail and the captured packets)
that a successful connection was established using the tunnel mode.

b. Test 2: If transport mode is selected, the evaluator shall use the
guidance documentation to configure the TOE to operate in transport
mode and also configures a VPN peer to operate in transport mode.
The evaluator shall configure the TOE and the VPN peer to use any of
the allowed cryptographic algorithms, authentication methods, etc. to
ensure an allowable SA can be negotiated. The evaluator shall then
initiate a connection from the TOE to connect to the VPN peer. The
evaluator shall observe (for example, in the audit trail and the
captured packets) that a successful connection was established using
the transport mode.

FCS_IPSEC_EXT.1.4

440. The evaluator shall configure the TOE as indicated in the guidance
documentation configuring the TOE to use each of the supported algorithms,
attempt to establish a connection using ESP, and verify that the attempt
succeeds.

FCS_IPSEC_EXT.1.5

441. Tests are performed in conjunction with the other IPsec evaluation activities.

cPP_ND_v4.0-SD, 25-NOV-2025 110

a. Test 1: If IKEv1 is selected, the evaluator shall configure the TOE as
indicated in the guidance documentation and attempt to establish a
connection using an IKEv1 Phase 1 connection in aggressive mode.
This attempt should fail. The evaluator shall then show that main
mode exchanges are supported.

b. Test 2: If NAT traversal is selected within the IKEv2 selection, the
evaluator shall configure the TOE so that it will perform NAT traversal
processing as described in the TSS and RFC 7296, Section 2.23. The
evaluator shall initiate an IPsec connection and determine that the
NAT is successfully traversed.

FCS_IPSEC_EXT.1.6

442. The evaluator shall configure the TOE to use the ciphersuite under test to
encrypt the IKEv1 and/or IKEv2 payload and establish a connection with a peer
device, which is configured to only accept the payload encrypted using the
indicated ciphersuite. The evaluator shall confirm the algorithm was that used
in the negotiation.

FCS_IPSEC_EXT.1.7

443. When testing this functionality, the evaluator shall ensure that both sides are
configured appropriately. From the RFC “A difference between IKEv1 and IKEv2
is that in IKEv1 SA lifetimes were negotiated. In IKEv2, each end of the SA is
responsible for enforcing its own lifetime policy on the SA and rekeying the SA
when necessary. If the two ends have different lifetime policies, the end with the
shorter lifetime will end up always being the one to request the rekeying. If the
two ends have the same lifetime policies, it is possible that both will initiate a
rekeying at the same time (which will result in redundant SAs). To reduce the
probability of this happening, the timing of rekeying requests SHOULD be
jittered.”

444. Each of the following tests shall be performed for each version of IKE
selected in the FCS_IPSEC_EXT.1.5 protocol selection:

a. Test 1: If ‘number of bytes’ is selected as the SA lifetime measure, the
evaluator shall configure a maximum lifetime in terms of the number
of bytes allowed following the guidance documentation. The evaluator
shall configure a test peer with a byte lifetime that exceeds the
lifetime of the TOE. The evaluator shall establish a SA between the
TOE and the test peer, and determine that once the allowed number of
bytes through this SA is exceeded, a new SA is negotiated. The
evaluator shall verify that the TOE initiates a Phase 1 negotiation.

b. Test 2: If ‘length of time’ is selected as the SA lifetime measure, the
evaluator shall configure a maximum lifetime no later than 24 hours

cPP_ND_v4.0-SD, 25-NOV-2025 111

for the Phase 1 SA following the guidance documentation. The
evaluator shall configure a test peer with a Phase 1 SA lifetime that
exceeds the Phase 1 SA lifetime on the TOE. The evaluator shall
establish a SA between the TOE and the test peer, maintain the Phase
1 SA for 24 hours, and determine that a new Phase 1 SA is negotiated
on or before 24 hours has elapsed. The evaluator shall verify that the
TOE initiates a Phase 1 negotiation.

FCS_IPSEC_EXT.1.8

445. When testing this functionality, the evaluator shall ensure that both sides are
configured appropriately. From the RFC “A difference between IKEv1 and IKEv2
is that in IKEv1 SA lifetimes were negotiated. In IKEv2, each end of the SA is
responsible for enforcing its own lifetime policy on the SA and rekeying the SA
when necessary. If the two ends have different lifetime policies, the end with the
shorter lifetime will end up always being the one to request the rekeying. If the
two ends have the same lifetime policies, it is possible that both will initiate a
rekeying at the same time (which will result in redundant SAs). To reduce the
probability of this happening, the timing of rekeying requests SHOULD be
jittered.”

446. Each of the following tests shall be performed for each version of IKE
selected in the FCS_IPSEC_EXT.1.5 protocol selection:

a. Test 1: If ‘number of bytes’ is selected as the SA lifetime measure, the
evaluator shall configure a maximum lifetime in terms of the number
of bytes allowed following the guidance documentation. The evaluator
shall configure a test peer with a byte lifetime that exceeds the
lifetime of the TOE. The evaluator shall establish a SA between the
TOE and the test peer, and determine that once the allowed number of
bytes through this SA is exceeded, a new SA is negotiated. The
evaluator shall verify that the TOE initiates a Phase 2 negotiation.

b. Test 2: If ‘length of time’ is selected as the SA lifetime measure, the
evaluator shall configure a maximum lifetime no later than 8 hours for
the Phase 2 SA following the guidance documentation. The evaluator
shall configure a test peer with a Phase 2 SA lifetime that exceeds the
Phase 2 SA lifetime on the TOE. The evaluator shall establish a SA
between the TOE and the test peer, maintain the Phase 1 SA for 8
hours, and determine that once a new Phase 2 SA is negotiated when
or before 8 hours has lapsed. The evaluator shall verify that the TOE
initiates a Phase 2 negotiation.

FCS_IPSEC_EXT.1.9

447. None.

cPP_ND_v4.0-SD, 25-NOV-2025 112

FCS_IPSEC_EXT.1.10

448. The following tests shall be performed.

a. Test 1: If IKEv1 is supported, Configure the TOE to use IKEv1:

▪ Test 1.a: If “according to the security strength associated
with the negotiated Diffie- Hellman group” has been
selected, for each supported authentication methods and
DH groups, demonstrate the TOE uses phase 1 and phase 2
nonces meeting the strength requirement defined in NIST
SP 800-57 for the appropriate DH group.

▪ Test 1.b: If “at least 128-bits in size and at least half the
output size of the negotiated pseudorandom function (PRF)
hash” has been selected, for each supported authentication
method and PRF hash, demonstrate the TOE uses phase 1
and phase 2 nonces suitable for the selected PRF.

b. Test 2: If IKEv2 is supported, configure the TOE to use IKEv2:

▪ For each supported DH group, demonstrate the TOE uses
IKE_SA_INIT and CREATE_CHILD_SA nonces suitable for the
selected PRF.

FCS_IPSEC_EXT.1.11

449. For each supported DH group, the evaluator shall test to ensure that all
supported IKE protocols can be successfully completed using that particular DH
group.

FCS_IPSEC_EXT.1.12

450. The evaluator shall follow the guidance to configure the TOE to perform the
following tests.

a. Test 1: This test shall be performed for each version of IKE supported.
The evaluator shall successfully negotiate an IPsec connection using
each of the supported algorithms and hash functions identified in the
requirements.

b. Test 2: This test shall be performed for each version of IKE supported.
The evaluator shall attempt to establish a SA for ESP that selects an
encryption algorithm with more strength than that being used for the
IKE SA (i.e., symmetric algorithm with a key size larger than that being
used for the IKE SA). Such attempts should fail.

c. Test 3: This test shall be performed for each version of IKE supported.
The evaluator shall attempt to establish an IKE SA using an algorithm

cPP_ND_v4.0-SD, 25-NOV-2025 113

that is not one of the supported algorithms and hash functions
identified in the requirements. Such an attempt should fail.

d. Test 4: This test shall be performed for each version of IKE supported.
The evaluator shall attempt to establish a SA for ESP (assumes the
proper parameters were used to establish the IKE SA) that selects an
encryption algorithm that is not identified in FCS_IPSEC_EXT.1.4. Such
an attempt should fail.

FCS_IPSEC_EXT.1.13

451. For efficiency sake, the testing is combined with the testing for
FIA_X509_EXT.1 and FIA_X509_EXT.2 from the Functional Package for X.509
(for IPsec connections), and FCS_IPSEC_EXT.1.1.

FCS_IPSEC_EXT.1.14

452. In the context of the tests below, a valid certificate is a certificate that passes
FIA_X509_EXT.1 (from the Functional Package for X.509) validation checks but
does not necessarily contain an authorised subject.

453. The evaluator shall perform the following tests:

a. Test 1 [conditional]: For each CN/identifier type combination
selected, the evaluator shall configure the peer’s reference identifier
on the TOE (per the administrative guidance) to match the field in the
peer’s presented certificate and shall verify that the IKE
authentication succeeds. If the TOE prioritizes CN checking over SAN
(through explicit configuration of the field when specifying the
reference identifier or prioritization rules), the evaluator shall also
configure the SAN so it contains an incorrect identifier of the correct
type (e.g., the reference identifier on the TOE is example.com, the
CN=example.com, and the SAN:FQDN=otherdomain.com) and verify
that IKE authentication succeeds.

b. Test 2 [conditional]: For each SAN/identifier type combination
selected, the evaluator shall configure the peer’s reference identifier
on the TOE (per the administrative guidance) to match the field in the
peer’s presented certificate and shall verify that the IKE
authentication succeeds. If the TOE prioritizes SAN checking over CN
(through explicit specification of the field when specifying the
reference identifier or prioritization rules), the evaluator shall also
configure the CN so it contains an incorrect identifier formatted to be
the same type (e.g., the reference identifier on the TOE is DNS-ID;
identify certificate has an identifier in SAN with correct DNS-ID, CN
with incorrect DNS-ID (and not a different type of identifier)) and
verify that IKE authentication succeeds.

cPP_ND_v4.0-SD, 25-NOV-2025 114

c. Test 3 [conditional]: For each CN/identifier type combination
selected, the evaluator shall:

i. Create a valid certificate with the CN so it contains the valid
identifier followed by ‘\0’. If the TOE prioritizes CN checking
over SAN (through explicit specification of the field when
specifying the reference identifier or prioritization rules)
for the same identifier type, the evaluator shall configure
the SAN so it matches the reference identifier.

ii. Configure the peer’s reference identifier on the TOE (per the
administrative guidance) to match the CN without the ‘\0’
and verify that IKE authentication fails.

d. Test 4 [conditional]: For each SAN/identifier type combination
selected, the evaluator shall:

i. Create a valid certificate with an incorrect identifier in the
SAN. The evaluator shall configure a string representation of
the correct identifier in the DN. If the TOE prioritizes CN
checking over SAN (through explicit specification of the field
when specifying the reference identifier or prioritization
rules) for the same identifier type, the
addition/modification shall be to any non-CN field of the
DN. Otherwise, the addition/modification shall be to the CN.

ii. Configure the peer’s reference identifier on the TOE (per the
administrative guidance) to match the correct identifier
(expected in the SAN) and verify that IKE authentication
fails.

e. Test 5 [conditional]: If the TOE supports DN identifier types, the
evaluator shall configure the peer’s reference identifier on the TOE
(per the administrative guidance) to match the subject DN in the
peer’s presented certificate and shall verify that the IKE
authentication succeeds.

f. Test 6 [conditional]: If the TOE supports DN identifier types, to
demonstrate a bit-wise comparison of the DN, the evaluator shall
create the following valid certificates and verify that the IKE
authentication fails when each certificate is presented to the TOE:

i. Duplicate the CN field, so the otherwise authorised DN
contains two identical CNs.

ii. Append ‘\0’ to a non-CN field of an otherwise authorised
DN.

4.2.12. FCS_NTP_EXT.1 NTP Protocol

cPP_ND_v4.0-SD, 25-NOV-2025 115

4.2.12.1. TSS

FCS_NTP_EXT.1.1

454. The evaluator shall examine the TSS to ensure it identifies the version of NTP
supported, how it is implemented and what approach the TOE uses to ensure
the timestamp it receives from an NTP timeserver (or NTP peer) is from an
authenticated source and the integrity of the time has been maintained.

455. The TOE must support at least one of the methods or may use multiple
methods, as specified in the SFR element 1.2. The evaluator shall ensure that
each method selected in the ST is described in the TSS, including the version of
NTP supported in element 1.1, the message digest algorithms used to verify the
authenticity of the timestamp and/or the protocols used to ensure integrity of
the timestamp.

FCS_NTP_EXT.1.2, FCS_NTP_EXT.1.3, and FCS_NTP_EXT.1.4

456. None.

4.2.12.2. Guidance Documentation

FCS_NTP_EXT.1.1

457. The evaluator shall examine the guidance documentation to ensure it
provides the Security Administrator instructions as how to configure the
version of NTP supported, how to configure multiple NTP servers for the TOE’s
time source and how to configure the TOE to use the method(s) that are
selected in the ST.

FCS_NTP_EXT.1.2

458. For each of the secondary selections made in the ST, the evaluator shall
examine the guidance document to ensure it instructs the Security
Administrator how to configure the TOE to use the algorithms that support the
authenticity of the timestamp and/or how to configure the TOE to use the
protocols that ensure the integrity of the timestamp.

Assurance Activity Note:

Each primary selection in the SFR contains selections that specify a
cryptographic algorithm or cryptographic protocol. For each of these secondary
selections made in the ST, the evaluator shall examine the guidance
documentation to ensure that the documentation instructs the Security
Administrator how to configure the TOE to use the chosen option(s).

cPP_ND_v4.0-SD, 25-NOV-2025 116

FCS_NTP_EXT.1.3

459. The evaluator shall examine the guidance documentation to ensure it
provides the Security Administrator instructions as how to configure the TOE to
not accept broadcast and multicast NTP packets that would result in the
timestamp being updated.

FCS_NTP_EXT.1.4

460. None.

4.2.12.3. Tests

FCS_NTP_EXT.1.1

461. The version of NTP selected in element 1.1 and specified in the ST shall be
verified by observing establishment of a connection to an external NTP server
known to be using the specified version(s) of NTP. This may be combined with
tests of other aspects of FCS_NTP_EXT.1 as described below.

FCS_NTP_EXT.1.2

462. The cryptographic algorithms selected in element 1.2 and specified in the ST
will have been specified in an FCS_COP SFR and tested in the accompanying
Evaluation Activity for that SFR. Likewise, the cryptographic protocol selected in
in element 1.2 and specified in the ST will have been specified in an FCS SFR and
tested in the accompanying Evaluation Activity for that SFR.

[conditional] If the message digest algorithm is claimed in element 1.2, the
evaluator shall configure the TOE and NTP server so the TOE can synchronize
time using a claimed message digest algorithm. The evaluator shall modify the
response(s) from the NTP server so the response(s) contains a MAC that was
generated by a different message digest algorithm and confirm the TOE does not
synchronize to this time source. Other than the invalid MAC, the NTP
response(s) must be valid (e.g., key ID, key value used, timestamps).

Note: Since the algorithm is not identified in the server response, this tests an
incorrect algorithm and an invalid MAC.

The evaluator shall use a packet sniffer to capture the network traffic between
the TOE and the NTP server. The evaluator shall use the captured network
traffic, to verify the NTP version, to observe time change of the TOE and uses the
TOE’s audit log to determine that the TOE accepted the NTP server’s timestamp
update.

cPP_ND_v4.0-SD, 25-NOV-2025 117

The captured traffic is also used to verify that the appropriate message digest
algorithm was used to authenticate the time source and/or the appropriate
protocol was used to ensure integrity of the timestamp that was transmitted in
the NTP packets.

FCS_NTP_EXT.1.3

463. The evaluator shall configure NTP server(s) to support periodic time updates
to broadcast and multicast addresses. The evaluator shall confirm the TOE is
configured to not accept broadcast and multicast NTP packets that would result
in the timestamp being updated. The evaluator shall check that the time stamp
is not updated after receipt of the broadcast and multicast packets.

FCS_NTP_EXT.1.4

464. The evaluator shall perform the following tests:

a. Test 1: The evaluator shall confirm the TOE supports configuration of
at least three (3) NTP time sources. The evaluator shall configure at
least three NTP servers to support periodic time updates to the TOE.
The evaluator shall confirm the TOE is configured to accept NTP
packets that would result in the timestamp being updated from each
of the NTP servers. The evaluator shall check that the time stamp is
updated after receipt of the NTP packets. The purpose of this test to
verify that the TOE can be configured to synchronize with multiple
NTP servers. It is up to the evaluator to determine that the multi-
source update of the time information is appropriate and consistent
with the behaviour prescribed by the RFC 1305 for NTPv3 and RFC
5905 for NTPv4.

b. Test 2: (The intent of this test is to ensure that the TOE would only
accept NTP updates from configured NTP Servers.) The evaluator
shall confirm that the TOE would not synchronize to other, not
explicitly configured time sources by sending an otherwise valid but
unsolicited NTP Server response indicating different time from the
TOE’s current system time. This rogue time source needs to be
configured in a way (e.g., degrade or disable valid and configured NTP
servers) that could plausibly result in unsolicited updates becoming a
preferred time source if they are not discarded by the TOE. The TOE is
not mandated to respond in a detectable way or audit the occurrence
of such unsolicited updates. It is up to the evaluator to craft and
transmit unsolicited updates in a way that would be consistent with
the behaviour of a correctly-functioning NTP server.

4.3. Identification and Authentication (FIA)

cPP_ND_v4.0-SD, 25-NOV-2025 118

4.3.1. FIA_AFL.1 Authentication Failure Management

4.3.1.1. TSS

465. The evaluator shall examine the TSS to determine that it contains a
description, for each supported method for remote administrative actions, of
how successive unsuccessful authentication attempts are detected and tracked.
The TSS shall also describe the method by which the remote administrator is
prevented from successfully logging on to the TOE, and the actions necessary to
restore this ability.

466. The evaluator shall examine the TSS to confirm that the TOE ensures that
authentication failures by remote administrators cannot lead to a situation
where no administrator access is available, either permanently or temporarily
(e.g., by providing local logon which is not subject to blocking).

4.3.1.2. Guidance Documentation

467. The evaluator shall examine the guidance documentation to ensure that
instructions for configuring the number of successive unsuccessful
authentication attempts and time period (if implemented) are provided, and
that the process of allowing the remote administrator to once again successfully
log on is described for each “action” specified (if that option is chosen). If
different actions or mechanisms are implemented depending on the secure
protocol employed (e.g., TLS vs. SSH), all must be described.

468. The evaluator shall examine the guidance documentation to confirm that it
describes, and identifies the importance of, any actions that are required in
order to ensure that administrator access will always be maintained, even if
remote administration is made permanently or temporarily unavailable due to
blocking of accounts as a result of FIA_AFL.1.

4.3.1.3. Tests

469. The evaluator shall perform the following tests for each method by which
remote administrators access the TOE (e.g., any passwords entered as part of
establishing the connection protocol or the remote administrator application):

a. Test 1: The evaluator shall use the operational guidance to configure
the number of successive unsuccessful authentication attempts
allowed by the TOE (and, if the time period selection in FIA_AFL.1.2 is
included in the ST, then the evaluator shall also use the operational
guidance to configure the time period after which access is re-
enabled). The evaluator shall test that once the authentication
attempts limit is reached, authentication attempts with valid
credentials are no longer successful.

cPP_ND_v4.0-SD, 25-NOV-2025 119

b. Test 2: After reaching the limit for unsuccessful authentication
attempts as in Test 1 above, the evaluator shall proceed as follows.

If the administrator action selection in FIA_AFL.1.2 is included in the
ST, then the evaluator shall confirm by testing that following the
operational guidance and performing each action specified in the ST
to re-enable the remote administrator’s access results in successful
access (when using valid credentials for that administrator).

If the time period selection in FIA_AFL.1.2 is included in the ST, then
the evaluator shall wait for just less than the time period configured in
Test 1 and show that an authorisation attempt using valid credentials
does not result in successful access. The evaluator shall then wait until
just after the time period configured in Test 1 and show that an
authorisation attempt using valid credentials results in successful
access.

4.3.2. FIA_UAU.7 Protected Authentication Feedback

4.3.2.1. TSS

470. None

4.3.2.2. Guidance Documentation

471. The evaluator shall examine the guidance documentation to determine that
any necessary preparatory steps to ensure authentication data is not revealed
while entering for each local login allowed.

4.3.2.3. Tests

472. The evaluator shall perform the following test for each method of local login
allowed:

a. Test 1: The evaluator shall locally authenticate to the TOE. While
making this attempt, the evaluator shall verify that at most obscured
feedback is provided while entering the authentication information.

4.3.3. FIA_PMG_EXT.1 Password Management

4.3.3.1. TSS

473. The evaluator shall check that the TSS:

cPP_ND_v4.0-SD, 25-NOV-2025 120

a. lists the supported special character(s) for the composition of
administrator passwords.

b. to ensure that the minimum_password_length parameter is
configurable by a Security Administrator.

c. lists the range of values supported for the minimum_password_length
parameter. The listed range shall include the value of 15.

4.3.3.2. Guidance Documentation

474. The evaluator shall examine the guidance documentation to determine that
it:

a. identifies the characters that may be used in passwords and provides
guidance to security administrators on the composition of strong
passwords, and

b. provides instructions on setting the minimum password length and
describes the valid minimum password lengths supported.

4.3.3.3. Tests

475. The evaluator shall perform the following tests.

a. Test 1: The evaluator shall compose passwords that meet the
requirements in some way. For each password, the evaluator shall
verify that the TOE supports the password. While the evaluator is not
required (nor is it feasible) to test all possible compositions of
passwords, the evaluator shall ensure that all characters, and a
minimum length listed in the requirement are supported and justify
the subset of those characters chosen for testing.

b. Test 2: The evaluator shall compose passwords that do not meet the
requirements in some way. For each password, the evaluator shall
verify that the TOE does not support the password. While the
evaluator is not required (nor is it feasible) to test all possible
compositions of passwords, the evaluator shall ensure that the TOE
enforces the allowed characters and the minimum length listed in the
requirement and justify the subset of those characters chosen for
testing.

4.3.4. FIA_PSK_EXT.1 Pre-Shared Key Composition

4.3.4.1. TSS

cPP_ND_v4.0-SD, 25-NOV-2025 121

476. If "generate" is selected, the evaluator shall confirm that this process uses the
RBG specified in FCS_RBG.1 and the output matches the size required in
FIA_PSK_EXT.1.2.

4.3.4.2. Guidance Documentation

477. The evaluator shall examine the operational guidance to determine that it
provides guidance to administrators on how to configure the mandatory_or_not
flag per RFC 8784.

4.3.4.3. Tests

478. The evaluator shall attempt to establish a connection and confirm that the
connection requires the selected factors in the PSK to establish the connection
in alignment with table 1 from RFC 8784.

4.4. Protection of the TSF (FPT)

4.4.1. FPT_APW_EXT.1 Protection of Administrator Passwords

4.4.1.1. TSS

479. The evaluator shall examine the TSS to determine that it details all
authentication data that are subject to this requirement, and the method used to
obscure the plaintext password data when stored. The TSS shall also detail
passwords are stored in such a way that they are unable to be viewed through
an interface designed specifically for that purpose, as outlined in the application
note.

4.4.1.2. Guidance Documentation

480. None

4.4.1.3. Tests

481. None

4.4.2. FPT_TUD_EXT.2 Trusted Update Based on Certificates

4.4.2.1. TSS

482. The evaluator shall verify that the TSS contains a description of how the
certificates are contained on the device. The evaluator also ensures that the TSS

cPP_ND_v4.0-SD, 25-NOV-2025 122

(or guidance documentation) describes how the certificates are
installed/updated/selected, if necessary.

483. The evaluator shall verify that the TSS describes how the TOE reacts if
X.509v3 certificates are used for trusted updates and the Security Administrator
attempts to perform the trusted update using an expired certificate.

484. The TSS shall describe the point at which revocation checking is performed
and describe whether the Security Administrator can manually provide
revocation information. It is expected that revocation checking is performed
when a certificate is used when performing trusted updates. It is not sufficient
to verify the status of a X.509v3 certificate only when it is loaded onto the
device.

4.4.2.2. Guidance Documentation

485. The evaluator shall verify that the guidance documentation describes how
the TOE reacts if X.509v3 certificates are used for trusted updates and the
administrator attempts to perform the trusted update using an expired
certificate. The evaluator shall verify any Security Administrator actions related
to revocation checking, both accepting or rejecting certificates and manually
providing revocation information. The description shall correspond to the
description in the TSS.

4.4.2.3. Tests

486. The evaluator shall perform the following tests:

a. Test 1: The evaluator shall verify that the update mechanism includes
a certificate validation according to FIA_X509_EXT.1 (in the
Functional Package for X.509) and a check for the Code Signing
purpose in the extendedKeyUsage.

b. Test 2: The evaluator shall digitally sign the update with an invalid
certificate and verify that update installation fails. The evaluator shall
digitally sign the application with a certificate that does not have the
Code Signing purpose and verify that application installation fails. The
evaluator shall repeat the test using a valid certificate and a certificate
that contains the Code Signing purpose and verify that the application
installation succeeds. The evaluator shall use a previously valid but
expired certificate and verifies that the TOE reacts as described in the
TSS and the guidance documentation. Testing for this element is
performed in conjunction with the assurance activities for
FPT_TUD_EXT.1.

c. Test 3: The evaluator shall demonstrate that checking the validity of a
certificate is performed at the time a certificate is used when

cPP_ND_v4.0-SD, 25-NOV-2025 123

performing trusted updates. It is not sufficient to verify the status of a
X.509v3 certificate only when it is loaded onto the device.

4.5. Security management (FMT)

4.5.1. FMT_MOF.1/Services Management of Security Functions
Behaviour

4.5.1.1. TSS

487. For distributed TOEs, see Section 2.4.1.1.

488. For non-distributed TOEs, the evaluator shall verify that the TSS lists the
services that the Security Administrator is able to start and stop and how that
operation is performed.

4.5.1.2. Guidance Documentation

489. For distributed TOEs, see Section 2.4.1.2.

490. For non-distributed TOEs, the evaluator shall also verify that the Guidance
Documentation describes how the TSS lists the services that the Security
Administrator is able to start and stop and how that operation is performed.

4.5.1.3. Tests

491. The evaluator shall perform the following tests:

a. Test 1: The evaluator shall try to enable and disable at least one of the
services as defined in the Application Notes for FAU_GEN.1.1
(whichever is supported by the TOE) without prior authentication as
Security Administrator (either by authenticating as a user with no
administrator privileges, if possible, or without prior authentication at
all). The attempt to enable/disable this service/these services should
fail.

When there is an implementation where no other users other than the
Security Administrator can be defined, the user might not be able to
get to the point where the attempt to enable/disable this
service/these services can be executed without user authentication. In
that case it shall be demonstrated that access control mechanisms
prevent execution up to the step that can be reached without
authentication as Security Administrator.

cPP_ND_v4.0-SD, 25-NOV-2025 124

b. Test 2: The evaluator shall try to enable and disable at least one of the
services as defined in the Application Notes for FAU_GEN.1.1
(whichever is supported by the TOE) with prior authentication as
Security Administrator. The attempt to enable/disable this
service/these services should be successful.

4.5.2. FMT_MOF.1/AutoUpdate Management of Security Functions
Behaviour

4.5.2.1. TSS

492. For distributed TOEs, see Section 2.4.1.1.

493. For non-distributed TOEs, the evaluator shall ensure the TSS describes how
checking for automatic updates or automated updates (whichever is supported
by the TOE) are performed to include required configuration settings to enable
and disable automated checking or automated updates.

4.5.2.2. Guidance Documentation

494. For distributed TOEs, see Section 2.4.1.2.

495. For non-distributed TOEs, the evaluator shall also ensure the TSS describes
how checking for automatic updates or automated updates (whichever is
supported by the TOE) are performed to include required configuration settings
to enable and disable automated checking or automated updates (whichever is
supported by the TOE).

4.5.2.3. Tests

496. The evaluator shall perform the following tests:

a. Test 1: The evaluator shall try to enable and disable automatic
checking for updates or automatic updates (whichever is supported
by the TOE) without prior authentication as Security Administrator
(by authenticating as a user with no administrator privileges or
without user authentication). The attempt to enable/disable
automatic checking for updates should fail. = When there is an
implementation where no other users than the Security Administrator
can be defined, the user might not be able to get to the point where
the attempt to enable/disable automatic checking for updates can be
executed without user authentication. In that case it shall be
demonstrated that access control mechanisms prevent execution up
to the step that can be reached without authentication as Security
Administrator.

cPP_ND_v4.0-SD, 25-NOV-2025 125

b. Test 2: The evaluator shall try to enable and disable automatic
checking for updates or automatic updates (whichever is supported
by the TOE) with prior authentication as Security Administrator. The
attempt to enable/disable automatic checking for updates should be
successful.

4.5.3. FMT_MOF.1/Functions Management of Security Functions
Behaviour

4.5.3.1. TSS

497. For distributed TOEs, see Section 2.4.1.1.

498. For non-distributed TOEs, the evaluator shall ensure that the TSS, for each
administrative function identified, details how the Security Administrator
determines or modifies the behaviour of (whichever is supported by the TOE)
transmitting audit data to an external IT entity, handling of audit data, and audit
functionality when Local Audit Storage Space is full (whichever is supported by
the TOE).

4.5.3.2. Guidance Documentation

499. For distributed TOEs, see Section 2.4.1.2.

500. For non-distributed TOEs, the evaluator shall also ensure the Guidance
Documentation describes how the Security Administrator determines or
modifies the behaviour of (whichever is supported by the TOE) transmitting
audit data to an external IT entity, handling of audit data, and audit functionality
when Local Audit Storage Space is full (whichever is supported by the TOE) are
performed to include required configuration settings.

4.5.3.3. Tests

If ‘transmission of audit data to external IT entity’ is selected from the
second selection together with 'modify the behaviour of' in the first selection

501. The evaluator shall perform the following tests:

a. Test 1: The evaluator shall try to modify all security related
parameters for configuration of the transmission protocol for
transmission of audit data to an external IT entity without prior
authentication as Security Administrator (by authentication as a user
with no administrator privileges or without user authentication at
all). Attempts to modify parameters without prior authentication
must fail.

cPP_ND_v4.0-SD, 25-NOV-2025 126

When there is an implementation where no other users than the
Security Administrator can be defined, the user might not be able to
get to the point where the attempt to modify the security related
parameters can be executed without user authentication. In that case
it shall be demonstrated that access control mechanisms prevent
execution up to the step that can be reached without authentication as
Security Administrator.

b. Test 2: The evaluator shall try to modify all security related
parameters for configuration of the transmission protocol for
transmission of audit data to an external IT entity with prior
authentication as Security Administrator. The effects of the
modifications should be confirmed.

The evaluator does not have to test all possible values of the security
related parameters for configuration of the transmission protocol for
transmission of audit data to an external IT entity but at least one
allowed value per parameter.

If 'handling of audit data' is selected from the second selection together with
'modify the behaviour of' in the first selection

502. The evaluator shall perform the following tests:

a. Test 1: The evaluator shall try to modify all security related
parameters for configuration of the handling of audit data without
prior authentication as Security Administrator (by authentication as a
user with no administrator privileges, or without user authentication
at all). Attempts to modify parameters without prior authentication
must fail.

When there is an implementation where no other users than the
Security Administrator can be defined, the user might not be able to
get to the point where the attempt can be executed without user
authentication. In that case it shall be demonstrated that access
control mechanisms prevent execution up to the step that can be
reached without authentication as Security Administrator. The term
‘handling of audit data’ refers to the different options for selection and
assignments in SFRs FAU_STG_EXT.1.4, FAU_STG_EXT.1.5 and
FAU_STG_EXT.2.

b. Test 2: The evaluator shall try to modify all security related
parameters for configuration of the handling of audit data with prior
authentication as Security Administrator. The effects of the
modifications shall be confirmed. The term ‘handling of audit data’

cPP_ND_v4.0-SD, 25-NOV-2025 127

refers to the different options for selection and assignments in SFRs
FAU_STG_EXT.1.4, FAU_STG_EXT.1.5 and FAU_STG_EXT.2.

The evaluator does not necessarily have to test all possible values of
the security related parameters for configuration of the handling of
audit data, but at least one allowed value per parameter must be
tested.

If 'audit functionality when Local Audit Storage Space is full' is selected from
the second selection together with 'modify the behaviour of' in the first
selection

503. The evaluator shall perform the following tests:

a. Test 1: The evaluator shall try to modify the behaviour when Local
Audit Storage Space is full without prior authentication as Security
Administrator (by authentication as a user with no administrator
privileges or without user authentication at all). This attempt should
fail.

When there is an implementation where no other users than the
Security Administrator can be defined, the user might not be able to
get to the point where the attempt can be executed without user
authentication. In that case it shall be demonstrated that access
control mechanisms prevent execution up to the step that can be
reached without authentication as Security Administrator.

b. Test 2: The evaluator shall try to modify the behaviour when Local
Audit Storage Space is full with prior authentication as Security
Administrator. This attempt should be successful. The effect of the
change shall be verified.

The evaluator does not necessarily have to test all possible values for
the behaviour when Local Audit Storage Space is full but at least one
change between allowed values for the behaviour must be tested.

If in the first selection 'determine the behaviour of' has been chosen together
with for any of the options in the second selection

504. The evaluator shall perform the following tests:

a. Test 1: The evaluator shall try to determine the behaviour of all
options chosen from the second selection without prior
authentication as Security Administrator (by authentication as a user
with no administrator privileges or without user authentication at
all). This can be done in one test or in separate tests. The attempt(s) to

cPP_ND_v4.0-SD, 25-NOV-2025 128

determine the behaviour of the selected functions without
administrator authentication shall fail.

When there is an implementation where other users than the Security
Administrator can be defined, the user might not be able to get to the
point where the attempt can be executed without user authentication.
In that case it shall be demonstrated that access control mechanisms
prevent execution up to the step that can be reached without
authentication as Security Administrator.

b. Test 2: The evaluator shall try to determine the behaviour of all
options chosen from the second selection with prior authentication as
Security Administrator. This can be done in one test or in separate
tests. The attempt(s) to determine the behaviour of the selected
functions with Security Administrator authentication shall be
successful.

4.5.4. FMT_MTD.1/CryptoKeys Management of TSF Data

4.5.4.1. TSS

505. For distributed TOEs, see Section 2.4.1.1.

506. For non-distributed TOEs, the evaluator shall ensure the TSS lists the keys
the Security Administrator is able to manage to include the options available
(e.g., generating keys, importing keys, modifying keys or deleting keys) and
names the operations that are performed.

4.5.4.2. Guidance Documentation

507. For distributed TOEs, see Section 2.4.1.2.

508. For non-distributed TOEs, the evaluator shall also ensure the Guidance
Documentation describes how the operations are performed on the keys the
Security Administrator is able to manage.

4.5.4.3. Tests

509. The evaluator shall perform the following tests:

a. Test 1: The evaluator shall try to perform at least one of the related
actions (modify, delete, generate/import) without prior
authentication as Security Administrator (either by authentication as
a non-administrative user, if supported, or without authentication at
all). Attempts to perform related actions without prior authentication
should fail.

cPP_ND_v4.0-SD, 25-NOV-2025 129

When there is an implementation where other users than the Security
Administrator can be defined, the user might not be able to get to the
point where the attempt can be executed without user authentication.
In that case it shall be demonstrated that access control mechanisms
prevent execution up to the step that can be reached without
authentication as Security Administrator.

b. Test 2: The evaluator shall try to perform at least one of the related
actions with prior authentication as Security Administrator. This
attempt should be successful.

4.6. TOE Access (FTA)

4.6.1. FTA_SSL_EXT.1 TSF-initiated Session Locking

4.6.1.1. TSS

510. The evaluator shall examine the TSS to determine that it details whether
local administrative session locking or termination is supported and the related
inactivity time period settings.

4.6.1.2. Guidance Documentation

511. The evaluator shall confirm that the guidance documentation states whether
local administrative session locking or termination is supported and
instructions for configuring the inactivity time period.

4.6.1.3. Tests

512. The evaluator shall perform the following test:

a. Test 1: The evaluator shall follow the guidance documentation to
configure several different values for the inactivity time period
referenced in the component. For each period configured, the
evaluator shall establish a local interactive session with the TOE. The
evaluator shall then verify that the session is either locked or
terminated after the configured time period. If locking was selected
from the component, the evaluator shall then verify that re-
authentication is needed when trying to unlock the session.

cPP_ND_v4.0-SD, 25-NOV-2025 130

5. Evaluation Activities for SARs
513. The sections below specify EAs for the SARs included in the related cPPs (see

Section 1.1). The EAs in Section 2 (Evaluation Activities for SFRs), Section 3
(Evaluation Activities for Optional Requirements), and Section 4 (Evaluation
Activities for Selection-Based Requirements) are an interpretation of the more
general CEM assurance requirements as they apply to the specific technology
area of the TOE.

514. In this section, each SAR that is contained in the cPP is listed, and the EAs
that are not associated with an SFR are captured here, or a reference is made to
the CEM, and the evaluator is expected to perform the CEM work units.

5.1. ASE: Security Target Evaluation

5.1.1. General Evaluation Activities for TOE Summary Specification
(ASE_TSS.1) for All TOEs

515. When evaluating a Security Target, the evaluator performs the work units as
presented in the CEM. In addition, the evaluator shall ensure the content of the
TSS in the ST satisfies the EAs specified in Section 2 (Evaluation Activities for
SFRs).

5.1.2. Additional Evaluation Activities for TOE Summary
Specification (ASE_TSS.1) for Distributed TOEs

516. For distributed TOEs, only the SFRs classified as ‘all’ have to be fulfilled by all
TOE parts. The SFRs classified as ‘One’ or ‘Feature Dependent’ only have to be
fulfilled by either one or some TOE parts, respectively. To make sure that the
distributed TOE as a whole fulfills all the SFRs the following actions for
ASE_TSS.1 have to be performed as part of ASE_TSS.1.1E.

ASE_TSS.1
element

Evaluator Action

ASE_TSS.1.1C

The evaluator shall examine the TSS to determine
that it is clear which TOE components contribute to
each SFR or how the components combine to meet
each SFR.

cPP_ND_v4.0-SD, 25-NOV-2025 131

ASE_TSS.1
element Evaluator Action

The evaluator shall verify the sufficiency to fulfil the
related SFRs. This includes checking that the TOE as a
whole fully covers all SFRs and that all functionality
that is required to be audited is in fact audited
regardless of the component that carries it out.

517. Note that additional Evaluation Activities for the TSS in the case of a
distributed TOE are defined in Annex B.4.

5.2. ADV: Development

5.2.1. Basic Functional Specification (ADV_FSP.1)

518. The EAs for this assurance component focus on understanding the interfaces
(e.g., application programming interfaces, command line interfaces, graphical
user interfaces, network interfaces) described in the AGD documentation, and
possibly identified in the TSS in response to the SFRs. Specific evaluator actions
to be performed against this documentation are identified (where relevant) for
each SFR in Section 2, and in EAs for AGD, ATE and AVA SARs in other parts of
Section 5.

519. The EAs presented in this section address the CEM work units ADV_FSP.1-1,
ADV_FSP.1-2, ADV_FSP.1-3, and ADV_FSP.1-5.

520. The EAs are reworded for clarity and interpret the CEM work units such that
they will result in more objective and repeatable actions by the evaluator. The
EAs in this SD are intended to ensure the evaluators are consistently performing
equivalent actions.

521. The documents to be examined for this assurance component in an
evaluation are therefore the Security Target, AGD documentation, and any
required supplementary information required by the cPP: no additional
“functional specification” documentation is necessary to satisfy the EAs. The
interfaces that need to be evaluated are also identified by reference to the EAs
listed for each SFR and are expected to be identified in the context of the
Security Target, AGD documentation, and any required supplementary
information defined in the cPP rather than as a separate list specifically for the
purposes of CC evaluation. The direct identification of documentation
requirements and their assessment as part of the EAs for each SFR also means

cPP_ND_v4.0-SD, 25-NOV-2025 132

that the tracing required in ADV_FSP.1-4, ADV_FSP.1-6 and ADV_FSP.1-7 is
treated as implicit and no separate mapping information is required for this
element.

CEM ADV_FSP.1 Work Units Evaluation Activities

ADV_FSP.1-1 The evaluator
shall examine the functional
specification to determine that
it states the purpose of each
SFR-supporting and SFR-
enforcing TSFI.

5.2.1.1 Evaluation Activity: The evaluator
shall examine the interface documentation
to ensure it describes the purpose and
method of use for each TSFI that is identified
as being security relevant.

ADV_FSP.1-2 The evaluator
shall examine the functional
specification to determine that
the method of use for each
SFR-supporting and SFR-
enforcing TSFI is given.

5.2.1.1 Evaluation Activity: The evaluator
shall examine the interface documentation
to ensure it describes the purpose and
method of use for each TSFI that is identified
as being security relevant.

ADV_FSP.1-3 The evaluator
shall examine the
presentation of the TSFI to
determine that it identifies all
parameters associated with
each SFR-enforcing and SFR
supporting TSFI.

5.2.1.2 Evaluation Activity: The evaluator
shall check the interface documentation to
ensure it identifies and describes the
parameters for each TSFI that is identified as
being security relevant.

ADV_FSP.1-4 The evaluator
shall examine the rationale
provided by the developer for
the implicit categorisation of
interfaces as SFR-non-
interfering to determine that it
is accurate.

Work unit ADV_FSP.1-4 from the [CEM]
states: “In the case where the developer has
provided adequate documentation to
perform the analysis called for by the rest of
the work units for this component without
explicitly identifying SFR-enforcing and SFR-

cPP_ND_v4.0-SD, 25-NOV-2025 133

CEM ADV_FSP.1 Work Units Evaluation Activities

supporting interfaces, this work unit should
be considered satisfied.”

Since the rest of the ADV_FSP.1 work units
will have been satisfied upon completion of
the EAs, it follows that this work unit is
satisfied as well.

ADV_FSP.1-5 The evaluator
shall check that the tracing
links the SFRs to the
corresponding TSFIs.

5.2.1.3 Evaluation Activity: The evaluator
shall examine the interface documentation
and confirm that all security-relevant
interfaces are described. The evaluator shall
also confirm that all internal (FPT_ITT.1),
administrative (FTP_TRP.1/Admin), and
trusted channel (FTP_ITC.1) requirements
unambiguously trace to documented
interfaces.

ADV_FSP.1-6 The evaluator
shall examine the functional
specification to determine that
it is a complete instantiation of
the SFRs.

EAs that are associated with the SFRs in
Section 2, and, if applicable, Sections 3 and 4,
are performed to ensure that all the SFRs
where the security functionality is externally
visible (i.e., at the TSFI) are covered.
Therefore, the intent of this work unit is
covered.

ADV_FSP.1-7 The evaluator
shall examine the functional
specification to determine that
it is an accurate instantiation
of the SFRs.

EAs that are associated with the SFRs in
Section 2, and, if applicable, Sections 3 and 4,
are performed to ensure that all the SFRs
where the security functionality is externally
visible (i.e., at the TSFI) are addressed, and
that the description of the interfaces is
accurate with respect to the specification

cPP_ND_v4.0-SD, 25-NOV-2025 134

CEM ADV_FSP.1 Work Units Evaluation Activities

captured in the SFRs. Therefore, the intent of
this work unit is covered.

Table 1: Mapping of ADV_FSP.1 CEM Work Units to Evaluation Activities

5.2.1.1. Evaluation Activity

522. The evaluator shall examine the interface documentation to ensure it describes
the purpose and method of use for each TSFI that is identified as being security
relevant.

523. In this context, TSFI are deemed security relevant if they are used by the
administrator to configure the TOE, or to perform other administrative
functions (e.g., audit review or performing updates). Explicitly labelling TSFI as
security relevant or non-security relevant is not necessary. A TSFI is implicitly
security relevant if it is used to satisfy an evaluation activity, or if it is identified
in the ST or guidance documentation as adhering to the security policies (as
presented in the SFRs). The intent is that these interfaces will be adequately
tested and having an understanding of how these interfaces are used in the TOE
is necessary to ensure proper test coverage is applied. According to the
description above 'security relevant' corresponds to the combination of 'SFR-
enforcing' and 'SFR-supporting' as defined in CC Part 3, page 36 last paragraph.

524. The set of TSFI that are provided as evaluation evidence are contained in the
Security Target and the guidance documentation.

5.2.1.2. Evaluation Activity

525. The evaluator shall check the interface documentation to ensure it identifies
and describes the parameters for each TSFI that is identified as being security
relevant.

5.2.1.3. Evaluation Activity

526. The evaluator shall examine the interface documentation to develop a mapping
of the interfaces to SFRs.

527. The evaluator shall use the provided documentation to identify and examine
a representative set of interfaces to perform the EAs presented in Section 2,
including the EAs associated with testing of the interfaces.

cPP_ND_v4.0-SD, 25-NOV-2025 135

528. It should be noted that there may be some SFRs that do not have a TSFI that
is explicitly “mapped” to invoke the desired functionality. For example,
generating a random bit string or destroying a cryptographic key that is no
longer needed are capabilities that may be specified in SFRs, but are not invoked
by an interface.

529. The required EAs define the design and interface information required to
meet ADV_FSP.1. If the evaluator is unable to perform an EA, then the evaluator
shall conclude that an adequate functional specification has not been provided.

5.3. AGD: Guidance Documents

530. It is not necessary for a TOE to provide separate documentation to meet the
individual requirements of AGD_OPE and AGD_PRE. Although the EAs in this
section are described under the traditionally separate AGD families, the
mapping between the documentation provided by the developer and AGD_OPE
and AGD_PRE requirements may be many-to-many, as long as all requirements
are met in documentation that is delivered to Security Administrators and users
(as appropriate) as part of the TOE.

531. Note that additional EAs for the guidance documentation in the case of a
distributed TOE are defined in Annex B.4.

5.3.1. Operational User Guidance (AGD_OPE.1)

532. The evaluator performs the CEM work units associated with the AGD_OPE.1
SAR. Specific requirements and EAs on the guidance documentation are
identified (where relevant) in the individual EAs for each SFR. For the related
evaluation activities, the evaluation evidence documents Security Target, AGD
documentation (user guidance) and functional specification documentation (if
provided) shall be used as input documents. Each input document is subject to
ALC_CMS.1-2 requirements.

533. In addition, the evaluator performs the EAs specified below.

5.3.1.1. Evaluation Activity

534. The evaluator shall verify the Operational guidance documentation is
distributed to Security Administrators and users (as appropriate) as part of the
TOE, so that there is a reasonable guarantee that Security Administrators and
users are aware of the existence and role of the documentation in establishing and
maintaining the evaluated configuration.

5.3.1.2. Evaluation Activity

cPP_ND_v4.0-SD, 25-NOV-2025 136

535. The evaluator shall verify that the Operational guidance is provided for every
Operational Environment that the product supports as claimed in the Security
Target and shall adequately address all platforms claimed for the TOE in the
Security Target.

5.3.1.3. Evaluation Activity

536. The evaluator shall verify that the Operational guidance contains instructions
for configuring any cryptographic implementation associated with the evaluated
configuration of the TOE. It shall provide a warning to the administrator that use
of other cryptographic implementations was not evaluated nor tested during the
CC evaluation of the TOE.

5.3.1.4. Evaluation Activity

537. The evaluator shall verify the Operational guidance makes it clear to an
administrator which security functionality and interfaces have been assessed and
tested by the EAs.

5.3.1.5. Evaluation Activity

538. In addition, the evaluator shall verify that the following requirements are
also met.

a. The guidance documentation shall contain instructions for
configuring any cryptographic implementation associated with the
evaluated configuration of the TOE. It shall provide a warning to the
administrator that use of other cryptographic implementations was
not evaluated nor tested during the CC evaluation of the TOE.

b. The evaluator shall verify that this process includes instructions for
obtaining the update itself. This should include instructions for
making the update accessible to the TOE (e.g., placement in a specific
directory).

c. The TOE will likely contain security functionality that does not fall in
the scope of evaluation under this cPP. The guidance documentation
shall make it clear to an administrator which security functionality is
covered by the EAs.

5.3.2. Preparative Procedures (AGD_PRE.1)

539. The evaluator will perform the CEM work units associated with the
AGD_PRE.1 SAR. Specific requirements and EAs on the preparative
documentation are identified (and where relevant are captured in the Guidance
Documentation portions of the EAs) in the individual EAs for each SFR.

cPP_ND_v4.0-SD, 25-NOV-2025 137

540. Preparative procedures are distributed to Security Administrators and users
(as appropriate) as part of the TOE, so that there is a reasonable guarantee that
Security Administrators and users are aware of the existence and role of the
documentation in establishing and maintaining the evaluated configuration.

541. In addition, the evaluator performs the EAs specified below.

5.3.2.1. Evaluation Activity:

542. The evaluator shall examine the Preparative procedures to ensure they include
a description of how the Security Administrator verifies that the operational
environment can fulfil its role to support the security functionality (including the
requirements of the Security Objectives for the Operational Environment specified
in the Security Target).

543. The documentation should be in an informal style and should be written with
sufficient detail and explanation that it can be understood and used by the
target audience (which will typically include IT staff who have general IT
experience but not necessarily experience with the TOE product itself).

5.3.2.2. Evaluation Activity

544. The evaluator shall examine the preparative procedures to ensure they are
provided for every Operational Environment that the product supports as claimed
in the Security Target and shall adequately address all platforms claimed for the
TOE in the Security Target.

5.3.2.3. Evaluation Activity

545. The evaluator shall examine the preparative procedures to ensure they include
instructions to successfully install the TSF in each Operational Environment.

5.3.2.4. Evaluation Activity

546. The evaluator shall examine the preparative procedures to ensure they include
instructions on how to manage the TSF as a product and as a component of the
larger Operational Environment in a manner that allows to preserve integrity of
the TSF.

547. The intent of this requirement is to ensure there exists adequate preparative
procedures (guidance in most cases) to put the TSF in a secure state (i.e.,
evaluated configuration). AGD_PRE.1 lists general requirements, the specific
assurance activities implementing it are performed as part of FMT_SMF.1,
FMT_MTD.1 and FMT_MOF.1 series of SFRs.

cPP_ND_v4.0-SD, 25-NOV-2025 138

5.3.2.5. Evaluation Activity

548. In addition, the evaluator shall verify that the following requirements are
also met.

549. The preparative procedures must:

a. include instructions to provide a protected administrative capability;
and

b. identify TOE passwords that have default values associated with them
and mandate that they shall be changed.

5.4. ALC: Life-cycle Support

5.4.1. Labelling of the TOE (ALC_CMC.1)

550. When evaluating that the TOE has been provided and is labelled with a
unique reference, the evaluator performs the work units as presented in the
CEM.

5.4.2. TOE CM Coverage (ALC_CMS.1)

551. When evaluating the developer’s coverage of the TOE in their CM system, the
evaluator performs the work units as presented in the CEM.

5.4.3. Basic Flaw Remediation (ALC_FLR.1) (optional)

552. When evaluating the developer’s procedures regarding basic flaw
remediation, the evaluator performs the work units as presented in the CEM.

5.4.4. Flaw Reporting Procedures (ALC_FLR.2) (optional)

553. When evaluating the developer’s flaw reporting procedures, the evaluator
performs the work units as presented in the CEM.

5.4.5. Systematic Flaw Remediation (ALC_FLR.3) (optional)

554. When evaluating the developer’s procedures regarding systematic flaw
remediation, the evaluator performs the work units as presented in the CEM.

5.5. ATE: Tests

5.5.1. Independent Testing – Conformance (ATE_IND.1)

cPP_ND_v4.0-SD, 25-NOV-2025 139

555. The focus of the testing is to confirm that the requirements specified in the
SFRs are being met. Additionally, testing is performed to confirm the
functionality described in the TSS, as well as the dependencies on the
Operational guidance documentation is accurate.

556. The evaluator performs the CEM work units associated with the ATE_IND.1
SAR. Specific testing requirements and EAs are captured for each SFR in
Sections 2, 3 and 4.

557. The evaluator shall consult Annex B when determining the appropriate
strategy for testing multiple variations or models of the TOE that may be under
evaluation.

558. Note that additional Evaluation Activities relating to evaluator testing in the
case of a distributed TOE are defined in Annex B.4.

5.6. AVA: Vulnerability Assessment

5.6.1. Vulnerability Survey (AVA_VAN.1)

559. While vulnerability analysis is inherently a subjective activity, a minimum
level of analysis can be defined and some measure of objectivity and
repeatability (or at least comparability) can be imposed on the vulnerability
analysis process. In order to achieve such objectivity and repeatability it is
important that the evaluator shall follow a set of well-defined activities and
documents their findings so others can follow their arguments and come to the
same conclusions as the evaluator. While this does not guarantee that different
evaluation facilities will identify exactly the same type of vulnerabilities or come
to exactly the same conclusions, the approach defines the minimum level of
analysis and the scope of that analysis and provides Certification Bodies a
measure of assurance that the minimum level of analysis is being performed by
the evaluation facilities.

560. In order to meet these goals some refinement of the AVA_VAN.1 CEM work
units is needed. The following table indicates, for each work unit in AVA_VAN.1,
whether the CEM work unit is to be performed as written, or if it has been
clarified by an Evaluation Activity. If clarification has been provided, a reference
to this clarification is provided in the table.

CEM AVA_VAN.1 Work Units Evaluation Activities

AVA_VAN.1-1 The evaluator shall
examine the TOE to determine that
the test configuration is consistent

The evaluator shall perform the CEM
activity as specified.

cPP_ND_v4.0-SD, 25-NOV-2025 140

CEM AVA_VAN.1 Work Units Evaluation Activities

with the configuration under
evaluation as specified in the ST.

The calibration of test resources
specified in the last paragraph of the
work unit AVA_VAN.1-1 of the [CEM]
applies to the tools listed in Annex
A.1.4.

AVA_VAN.1-2 The evaluator shall
examine the TOE to determine that
it has been installed properly and is
in a known state

The evaluator shall perform the CEM
activity as specified.

AVA_VAN.1-3 The evaluator shall
examine sources of information
publicly available to identify
potential vulnerabilities in the TOE.

Replace CEM work unit with activities
outlined in Annex A.1.

AVA_VAN.1-4 The evaluator shall
record in the ETR the identified
potential vulnerabilities that are
candidates for testing and
applicable to the TOE in its
operational environment.

Replace the CEM work unit with the
analysis activities on the list of
potential vulnerabilities in Annex A.1,
and documentation as specified in
Annex A.3.

AVA_VAN.1-5 The evaluator shall
devise penetration tests, based on
the independent search for potential
vulnerabilities.

Replace the CEM work unit with the
activities specified in Annex A.2.

AVA_VAN.1-6 The evaluator shall
produce penetration test
documentation for the tests based
on the list of potential

The CEM work unit is captured in
Annex A.3; there are no substantive
differences.

cPP_ND_v4.0-SD, 25-NOV-2025 141

CEM AVA_VAN.1 Work Units Evaluation Activities

vulnerabilities in sufficient detail to
enable the tests to be repeatable.
The test documentation shall
include:

a) identification of the potential
vulnerability the TOE is being tested
for;

b) instructions to connect and setup
all required test equipment as
required to conduct the penetration
test;

c) instructions to establish all
penetration test prerequisite initial
conditions;

d) instructions to stimulate the TSF;

e) instructions for observing the
behaviour of the TSF;

f) descriptions of all expected results
and the necessary analysis to be
performed on the observed
behaviour for comparison against
expected results;

g) instructions to conclude the test
and establish the necessary post-test
state for the TOE.

cPP_ND_v4.0-SD, 25-NOV-2025 142

CEM AVA_VAN.1 Work Units Evaluation Activities

AVA_VAN.1-7 The evaluator shall
conduct penetration testing.

The evaluator shall perform the CEM
activity as specified.

AVA_VAN.1-8 The evaluator shall
record the actual results of the
penetration tests.

The evaluator shall perform the CEM
activity as specified.

AVA_VAN.1-9 The evaluator shall
report in the ETR the evaluator
penetration testing effort, outlining
the testing approach, configuration,
depth and results.

Replace the CEM work unit with the
reporting called for in Annex A.3.

AVA_VAN.1-10 The evaluator shall
examine the results of all
penetration testing to determine
that the TOE, in its operational
environment, is resistant to an
attacker possessing a Basic attack
potential.

This work unit is not applicable for
Type 1 and Type 2 flaws (as defined in
Annex A.1), as inclusion in this
Supporting Document by the iTC makes
any confirmed vulnerabilities
stemming from these flaws subject to
an attacker possessing a Basic attack
potential.

AVA_VAN.1-11 The evaluator shall
report in the ETR all exploitable
vulnerabilities and residual
vulnerabilities, detailing for each:

a) its source (e.g., CEM activity being
undertaken when it was conceived,
known to the evaluator, read in a
publication);

Replace the CEM work unit with the
reporting called for in Annex A.3.

cPP_ND_v4.0-SD, 25-NOV-2025 143

CEM AVA_VAN.1 Work Units Evaluation Activities

b) the SFR(s) not met;

c) a description;

d) whether it is exploitable in its
operational environment or not (i.e.,
exploitable or residual).

e) the amount of time, level of
expertise, level of knowledge of the
TOE, level of opportunity and the
equipment required to perform the
identified vulnerabilities, and the
corresponding values using the
tables 3 and 4 of Annex B.4.

Table 2: Mapping of AVA_VAN.1 CEM Work Units to Evaluation Activities

561. Because of the level of detail required for the evaluation activities, the bulk of
the instructions are contained in Annex A, while an “outline” of the assurance
activity is provided below.

5.6.1.1. Evaluation Activity (Documentation):

562. In addition to the activities specified by the CEM in accordance with Table 2,
the evaluator shall perform the following activities.

563. The evaluator shall examine the documentation outlined below provided by the
developer to confirm that it contains all required information. This documentation
is in addition to the documentation already required to be supplied in response to
the EAs listed previously.

564. The developer shall provide documentation identifying the list of software
and hardware components[7] that compose the TOE. Hardware components
should identify compute-capable hardware components, at a minimum that
must include the processor, and where applicable, discrete crypto ASICs, TPMs,
etc. used by the TOE. Software components include applications, the operating
system and other major components that are independently identifiable and
reusable (outside of the TOE), for example a web server, protocol or

cPP_ND_v4.0-SD, 25-NOV-2025 144

cryptographic implementations, (independently identifiable and reusable
components are not limited to the list provided in the example). This additional
documentation is merely a list of the name and version number of the
components and will be used by the evaluators in formulating vulnerability
hypotheses during their analysis.

565. If the TOE is a distributed TOE then the developer shall provide:

a. documentation describing the allocation of requirements between
distributed TOE components as in [NDcPP, 3.4]

b. a mapping of the auditable events recorded by each distributed TOE
component as in [NDcPP, Table 2]

c. additional information in the Preparative Procedures as identified in
the refinement of AGD_PRE.1 in additional information in the
Preparative Procedures as identified in 3.4.1.2.

5.6.1.2. Evaluation Activity:

566. The evaluator shall formulate hypotheses in accordance with process defined
in Annex A. The evaluator shall document the flaw hypotheses generated for the
TOE in the report in accordance with the guidelines in Annex A.3. The evaluator
shall perform vulnerability analysis in accordance with Annex A.2. The results of
the analysis shall be documented in the report according to Annex A.3.

cPP_ND_v4.0-SD, 25-NOV-2025 145

6. Required Supplementary Information
567. This Supporting Document refers in various places to the possibility that

‘required supplementary information’ may need to be supplied as part of the
deliverables for an evaluation. This term is intended to describe information
that is not necessarily included in the Security Target or operational guidance,
and that may not necessarily be public. Examples of such information could be
entropy analysis, or description of a cryptographic key management
architecture used in (or in support of) the TOE. The requirement for any such
supplementary information will be identified in the relevant cPP.

568. The cPPs associated with this SD require an entropy analysis as described in
[NDcPP, Annex D].

cPP_ND_v4.0-SD, 25-NOV-2025 146

7. References
[CC1] Common Criteria for Information Technology Security Evaluation,
Part 1: Introduction and General Model
CCMB-2022-11-001, Version CC:2022 Revision 1, November 2022

[CC2] Common Criteria for Information Technology Security Evaluation,
Part 2: Security Functional Components,
CCMB-2022-11-002, Version CC:2022 Revision 1, November 2022

[CC3] Common Criteria for Information Technology Security Evaluation,
Part 3: Security Assurance Components,
CCMB-2022-11-003, Version CC:2022 Revision 1, November 2022

[CC4] Common Criteria for Information Technology Security Evaluation,
Part 4: Framework for the specification of evaluation methods and activities
CCMB-2022-11-004, Version CC:2022 Revision 1, November 2022

[CEM] Common Methodology for Information Technology Security Evaluation,
Evaluation Methodology,
CCMB-2022-11-006, Version CC:2022, Revision 1, November 2022

[FIPS 140-2] FIPS PUB 140-2, Security Requirements for cryptographic modules,
May 25, 2001

[FIPS 140-3] FIPS PUB 140-3, Security Requirements for cryptographic modules,
March 22 2019

[ISO/IEC 19790:2015]ISO/IEC 19790:2012/Cor 1:2015 Security requirements for
cryptographic Modules, August 2012

[ISO/IEC 19790:2025] ISO/IEC 19790:2025 Security requirements for cryptographic
Modules, February 2025

[FIPS 186-5] FIPS PUB 186-5, Digital Signature Standard (DSS), February 2023

[NDcPP] collaborative Protection Profile for Network Devices,
Version 4.0, 25 November 2025

cPP_ND_v4.0-SD, 25-NOV-2025 147

[NIST SP800-56A] NIST Special Publication SP800-56A Revision 3:
Recommendation for Pair-Wise Key Establishment Schemes Using Discrete
Logarithm Cryptography, Apr 2018

[NIST SP800-90A] NIST Special Publication SP800-90A Recommendation for
Random Number Generation Using Deterministic Random Bit Generators, June 24
2015

[SHAVS] The Secure Hash Algorithm Validation System (SHAVS), Updated: May
21, 2014

cPP_ND_v4.0-SD, 25-NOV-2025 148

Annex A: Vulnerability Analysis
A.1. Sources of Vulnerability Information

569. CEM Work Unit AVA_VAN.1-3 has been supplemented in this Supporting
Document to provide a better-defined set of flaws to investigate and procedures
to follow based on this particular technology. Terminology used is based on the
flaw hypotheses methodology, where the evaluation team hypothesizes flaws
and then either proves or disproves those flaws (a flaw is equivalent to a
“potential vulnerability” as used in the CEM). Flaws are categorized into four
“types” depending on how they are formulated:

1. A list of flaw hypotheses applicable to the technology described by the
cPP (in this case, a network device) derived from public sources as
documented in Annex A.1.1 – this fixed set has been agreed by the iTC.
Additionally, this will be supplemented with entries for a set of public
sources (as indicated below) that are directly applicable to the TOE or
its identified components (as defined by the process in Annex A.1.1
below); this is to ensure that the evaluators include in their
assessment applicable entries that have been discovered since the cPP
was published;

2. A list of flaw hypotheses listed in this document that are derived from
lessons learned specific to that technology and other iTC input (that
might be derived from other open sources and vulnerability
databases, for example) as documented in Annex A.1.2;

3. A list of flaw hypotheses derived from information available to the
evaluators; this includes the baseline evidence provided by the
developer described in this Supporting Document (documentation
associated with EAs, documentation described in Section 5.6.1.2,
documentation described in Section 6), as well as other information
(public and/or based on evaluator experience) as documented in
Annex A.1.3; and

4. A list of flaw hypotheses that are generated through the use of TC-
defined tools (e.g., nmap, fuzz testers) and their application as
specified in Annex A.1.4.

A.1.1. Type 1 Hypotheses – Public-Vulnerability-Based

570. The list of public sources of vulnerability information selected by the iTC is
given in Annex A.4.

571. The evaluators shall perform a search on the sources listed in Annex A.4 to
determine a list of potential flaw hypotheses that are specific to the TOE and its

cPP_ND_v4.0-SD, 25-NOV-2025 149

components as specified by the additional documentation mentioned above.
Any duplicates – either in a specific entry, or in the flaw hypothesis that is
generated from an entry from the same or a different source – can be noted and
removed from consideration by the evaluation team.

572. According to Section 5.6.1.1, the developer shall provide documentation
identifying the list of software and hardware components that compose the
TOE. The evaluator shall independently verify this list for completeness by
comparing it to the security functionality defined in the TSS of the ST and
ensuring that all expected components are accounted for. Hardware
components should identify at a minimum the processors used by the TOE.
Software components that are in the scope of this requirement include libraries,
frameworks, operating system and other major components that are
independently identifiable and reusable (i.e., can be present in other products)
components. The evaluator shall use the components list and determine that the
TOE and its components are free of unmitigated vulnerabilities. It is expected
that all remotely exploitable vulnerabilities present in the network device shall
be considered as part of vulnerability assessment ("network device" is used to
refer to the entire device and is not limited to the claimed security
functionality). The search criteria to be used when searching the sources shall
include:

o The list of software and hardware components that compose the TOE

o The TOE name (including model information as appropriate)

As the search terms can contain proprietary information and there is
a possibility that this information could be used by attackers to
identify potential attack surfaces, there is no expectation that search
terms containing proprietary information are published in any public-
facing document.

573. As part of type 1 flaw hypothesis generation for the specific components of
the TOE, the evaluator shall also search the component manufacturer’s websites
to determine if flaw hypotheses can be generated on this basis (for instance, if
security patches have been released for the version of the component being
evaluated, the subject of those patches may form the basis for a flaw
hypothesis).

A.1.2. Type 2 Hypotheses – iTC-Sourced

574. Annex A.5 contains the list of flaw hypothesis generated by the iTC for this
technology that must be considered by the evaluation team as flaw hypotheses
in performing the vulnerability assessment.

575. If the evaluators discover a Type 3 or Type 4 flaw that they believe should be
considered as a Type 2 flaw in future versions of this cPP, they should work

cPP_ND_v4.0-SD, 25-NOV-2025 150

with their CB to determine the appropriate means of submitting the flaw for
consideration by the iTC.

A.1.3. Type 3 Hypotheses – Evaluation-Team-Generated

576. Type 3 flaws are formulated by the evaluator based on information
presented by the product (through on-line help, product documentation and
user guides, etc.) and product behaviour during the (functional) testing
activities. The evaluator is also free to formulate flaws that are based on
material that is not part of the baseline evidence (e.g., information gleaned from
an Internet mailing list, or reading interface documentation on interfaces not
included in the set provided by the developer), although such activities have the
potential to vary significantly based upon the product and evaluation facility
performing the analysis.

577. If the evaluators discover a Type 3 flaw that they believe should be
considered as a Type 2 flaw in future versions of this cPP, they should work
with their CB to determine the appropriate means of submitting the flaw for
consideration by the iTC.

A.1.4. Type 4 Hypotheses – Tool-Generated

578. The evaluator is recommended but not mandated to perform Fuzz Testing to
generate Type 4 flaw hypotheses. Fuzz testing is a method where a set of
randomly generated inputs is used to induce an observable fault. If this
approach is selected, the evaluator shall e.g., identify a protocol implementing
one or more SFR-enforcing TSFI(s) and conduct fuzz testing by varying selected
fields in that protocol. For example, if the TOE’s remote administrative interface
is secured with TLS, Fuzz Testing of the SSL record header or the TLS
handshake message would be appropriate. Any results that are unexpected (e.g.,
core dumps, inappropriate errors, or unplanned reboots) should be investigated
and resolved. If Fuzz Testing is performed, the evaluator shall focus on security-
relevant parts of the TOE that have not been subjected to Fuzz Testing multiple
times (like publicly available libraries), but instead focus on custom parts of the
TOE (if such information is available to the evaluator).

579. Additionally, the evaluator shall utilize an automated port scanning tool as
part of the vulnerability assessment process. It is up to the evaluator to select
the applicable tools, however there is an expectation that any utilized tool is
actively maintained.

580. The iTC has not identified a specific tool to be used in accomplishing the
above flaw hypothesis generation activity, so any tool used by the evaluation
team is acceptable. The evaluation team shall record in the test report the name,
version, parameters, and results of all test tools used for this activity.

cPP_ND_v4.0-SD, 25-NOV-2025 151

581. If the evaluators discover a Type 4 flaw that they believe should be
considered as a Type 2 flaw in future versions of this cPP, they should work
with their CB to determine the appropriate means of submitting the flaw for
consideration by the iTC.

A.2. Process for Evaluator Vulnerability Analysis

582. As flaw hypotheses are generated from the activities described above, the
evaluation team will disposition them; that is, attempt to prove, disprove, or
determine the non-applicability of the hypotheses. This process is as follows:

o The evaluator shall refine each flaw hypothesis for the TOE and
attempt to disprove it using the information provided by the
developer or through penetration testing.

o During this process, the evaluator is free to interact with the
developer to determine if the flaw exists, including requests to the
developer for additional evidence (e.g., detailed design information,
consultation with engineering staff).

o In case of a confirmed flaw, the CB should be informed.

o Should the developer object to the information being requested as
being not compatible with the overall level of the evaluation
activity/cPP and cannot provide evidence otherwise that the flaw is
disproved, the evaluator shall prepare an appropriate set of materials
as follows:

a. The source documents used in formulating the hypothesis,
and why it represents a potential compromise against a
specific TOE function;

b. An argument why the flaw hypothesis could not be proven
or disproved by the evidence provided so far;

c. The type of information required to investigate the flaw
hypothesis further.

o The CB will then either approve or disapprove the request for
additional information. If approved, the developer provides the
requested evidence to disprove the flaw hypothesis (or, of course,
acknowledge the flaw).

o For each hypothesis, the evaluator shall note whether the flaw
hypothesis has been successfully disproved, successfully proven to
have identified a flaw, or requires further investigation. It is important
to have the results documented as outlined in Annex A.3 below.

o If the evaluator finds a flaw, the evaluator shall report these flaws to
the developer. All reported flaws must be addressed as follows:

cPP_ND_v4.0-SD, 25-NOV-2025 152

a. If the developer confirms that the flaw exists and that it is
exploitable at Basic Attack Potential, then a change is made
by the developer, and the resulting resolution is agreed by
the evaluator and noted as part of the evaluation report.

b. If the developer, the evaluator, and the CB agree that the
flaw is exploitable only above Basic Attack Potential and
does not require resolution for any other reason, then no
change is made, and the flaw is noted as a residual
vulnerability in the CB-internal report (ETR).

c. If the developer and evaluator agree that the flaw is
exploitable only above Basic Attack Potential, but it is
deemed critical to fix because of technology-specific or cPP-
specific aspects such as typical use cases or operational
environments, then a change is made by the developer, and
the resulting resolution is agreed by the evaluator and
noted as part of the evaluation report.

d. Disagreements between evaluator and developer regarding
questions of the existence of a flaw, its attack potential, or
whether it should be deemed critical to fix are resolved by
the CB.

583. Any testing performed by the evaluator shall be documented in the test
report as outlined in Annex A.3 below.

584. As indicated in Annex A.3, the public statement with respect to vulnerability
analysis that is performed on TOEs conformant to the cPP is constrained to
coverage of flaws associated with Types 1 and 2 (defined in Annex A.1) flaw
hypotheses only. The fact that the iTC generates these candidate hypotheses
indicates these must be addressed.

A.3. Reporting

585. The evaluators shall produce two reports on the testing effort; one that is
public-facing (that is, included in the non-proprietary evaluation report, which
is a subset of the Evaluation Technical Report (ETR)) and the complete ETR that
is delivered to the overseeing CB.

586. The public-facing report contains:

o The flaw identifiers returned when the procedures for searching
public sources were followed according to instructions in the
Supporting Document per Annex A.1.1;

o A statement that the evaluators have examined the Type 1 flaw
hypotheses specified in this Supporting Document in Annex A.1.1 (i.e.,

cPP_ND_v4.0-SD, 25-NOV-2025 153

the flaws listed in the previous bullet) and the Type 2 flaw hypotheses
specified in this Supporting Document by the iTC in Annex A.1.2;

587. A statement that the evaluation team developed Types 3 and 4 flaw
hypotheses in accordance with Sections A.1.3, A.1.4, and A.2, and that no
residual vulnerabilities exist that are exploitable by attackers with Basic Attack
Potential as defined by the CB in accordance with the guidance in the CEM. It
should be noted that this is just a statement about the “fact of” Types 3 and 4
flaw hypotheses being developed, and that no specifics about the number of
flaws, the flaws themselves, or the analysis pertaining to those flaws will be
included in the public-facing report.

588. No other information is provided in the public-facing report.

589. The internal CB report contains, in addition to the information in the public-
facing report:

o A list of all of the flaw hypotheses generated (see AVA_VAN.1-4);

o The evaluator penetration testing effort, outlining the testing
approach, configuration, depth and results (see AVA_VAN.1-9);

o All documentation used to generate the flaw hypotheses (in
identifying the documentation used in coming up with the flaw
hypotheses, the evaluation team must characterize the documentation
so that a reader can determine whether it is strictly required by this
Supporting Document, and the nature of the documentation (design
information, developer engineering notebooks, etc.));

o The evaluator shall report all exploitable vulnerabilities and residual
vulnerabilities, detailing for each:

▪ Its source (e.g., CEM activity being undertaken when it was
conceived, known to the evaluator, read in a publication);

▪ The SFR(s) not met;

▪ A description;

▪ Whether it is exploitable in its operational environment or
not (i.e., exploitable or residual).

▪ The amount of time, level of expertise, level of knowledge of
the TOE, level of opportunity and the equipment required to
perform the identified vulnerabilities (see AVA_VAN.1-11);

o How each flaw hypothesis was resolved (this includes whether the
original flaw hypothesis was confirmed or disproved, and any analysis
relating to whether a residual vulnerability is exploitable by an
attacker with Basic Attack Potential) (see AVA_VAN1-10); and

cPP_ND_v4.0-SD, 25-NOV-2025 154

o In the case that actual testing was performed in the investigation
(either as part of flaw hypothesis generation using tools specified by
the iTC in Annex A.1.4, or in proving/disproving a particular flaw) the
steps followed in setting up the TOE (and any required test
equipment); executing the test; post-test procedures; and the actual
results (to a level of detail that allow repetition of the test, including
the following:

▪ Identification of the potential vulnerability the TOE was/is
being tested for;

▪ Instructions to connect and setup all required test
equipment as required to conduct the penetration test;

▪ Instructions to establish all penetration test prerequisite
initial conditions;

▪ Instructions to stimulate the TSF;

▪ Instructions for observing the behaviour of the TSF;

▪ Descriptions of all expected results and the necessary
analysis to be performed on the observed behaviour for
comparison against expected results;

▪ Instructions to conclude the test and establish the necessary
post-test state for the TOE. (see AVA_VAN.1-6, AVA_VAN.1-
8).

A.4. Public Vulnerability Sources

590. The following sources of public vulnerabilities are sources for the iTC to
consider in both formulating the specific list of flaws to be investigated by the
evaluators, as well as to reference in directing the evaluators to perform key-
word searches during the evaluation of a specific TOE.

a. NIST National Vulnerabilities Database (can be used to access CVE and US-CERT
databases identified below):
https://nvd.nist.gov/vuln/search

b. CISA Known Exploited Vulnerabilities Catalog:
https://www.cisa.gov/known-exploited-vulnerabilities-catalog/

c. Common Vulnerabilities and Exposures:
https://www.cve.org/

d. US-CERT (Carnegie Mellon University):
https://www.kb.cert.org/vuls/html/search

https://nvd.nist.gov/vuln/search
https://www.cisa.gov/known-exploited-vulnerabilities-catalog/
https://www.cve.org/
https://www.kb.cert.org/vuls/html/search

cPP_ND_v4.0-SD, 25-NOV-2025 155

e. Tenable Network Security
https://www.tenable.com/plugins

f. Zero Day Initiative (Trend Micro)
https://www.zerodayinitiative.com/advisories/published/

g. Exploit Database (Offensive Security):
https://www.exploit-db.com/

h. Rapid7 Vulnerability and Exploit Database:
https://www.rapid7.com/db/?type=nexpose

https://www.tenable.com/plugins
https://www.zerodayinitiative.com/advisories/published/
https://www.exploit-db.com/
https://www.rapid7.com/db/?type=nexpose

cPP_ND_v4.0-SD, 25-NOV-2025 156

Annex B: Network Device Equivalency
Considerations
B.1. Introduction

591. This Annex provides a foundation for evaluators to determine whether a
developer’s request for equivalency of products for different models wishing to
claim conformance to the NDcPP is allowed.

592. For the purpose of evaluation, equivalency can be broken into two
categories:

o Variations in models: Separate TOE models/variations may include
differences that could necessitate separate testing across each model.
If there are no variations in any of the categories listed below, the
models may be considered equivalent.

o Variations in TOE dependencies on the environment (e.g.,
OS/platform the product is tested on): The method a TOE provides
functionality (or the functionality itself) may vary depending upon the
environment on which it is installed. If there is no difference in the
TOE-provided functionality or in the manner in which the TOE
provides the functionality, the models may be considered equivalent.

593. Determination of equivalency between models can result in different testing
outcomes:

o If a set of multiple different TOE instances are determined to be
equivalent, testing may be performed on a single variation of the TOE.
However, if the TOE variations have security-relevant functional
differences, each of the TOE models that exhibits either functional or
structural differences must be separately tested. Generally speaking,
only the difference between each variation of TOE must be separately
tested. Other equivalent functionality may be tested on a
representative model and not across multiple platforms.

o If it is determined that a TOE operates the same regardless of the
environment, testing may be performed on a single instance for all
equivalent configurations. However, if the TOE is determined to
provide environment-specific functionality, testing must take place in
each environment for which a difference in functionality exists.
Similar to the above scenario, only the functionality affected by
environment differences must be retested.

594. If a developer disagrees with the evaluator’s assessment of equivalency, the
CB will arbitrate between the two parties as to whether equivalency exists.

cPP_ND_v4.0-SD, 25-NOV-2025 157

B.2. Evaluator Guidance for Determining Equivalence

B.2.1. Strategy

595. When performing the equivalency analysis, the evaluator shall consider each
factor independently. A factor may be any number of things at various levels of
abstraction, ranging from the processor a device uses, to the underlying
operating system and hardware platform a software application relies upon.
Examples may be the various chip sets employed by the product, the type of
network interface (different device drivers), storage media (solid state drive,
spinning disk, EEPROM). It is important to consider how the difference in these
factors may influence the TOE’s ability to enforce the SFRs. Each analysis of an
individual factor will result in one of two outcomes,

o For the particular factor, all variations of the TOE on all supported
platforms are equivalent. In this case, testing may be performed on a
single model in a single test environment and cover all supported
models and environments.

o For the particular factor, a subset of the product has been identified to
require separate testing to ensure that it operates identically to all
other equivalent TOE. The analysis would identify the specific
combinations of models/testing environments that needed to be
tested.

596. Complete CC testing of the product would encompass the totality of each
individual analysis performed for each of the identified factors.

B.2.2. Guidance for Network Devices

597. The following table provides a description of how an evaluator shall consider
each of the factors that affect equivalency between TOE model variations and
across operating environments. Additionally, the table also identifies scenarios
that will result in additional separate testing across models.

Factor
Same/Not
Same

Evaluator Guidance

Platform/Hardware
Dependencies

Independent
If there are no identified
platform/hardware dependencies,
the evaluator shall consider testing

cPP_ND_v4.0-SD, 25-NOV-2025 158

Factor
Same/Not
Same Evaluator Guidance

on multiple hardware platforms to
be equivalent.

 Dependencies

If there are specified differences
between platforms/hardware, the
evaluator must identify if the
differences affect the cPP-specified
security functionality or if they
apply to non-cPP-specified
functionality. If functionality
specified in the cPP is dependent
upon platform/hardware provided
services, the product must be tested
on each of the different platforms to
be considered validated on that
particular hardware combination.
In these cases, the evaluator has the
option of only re-testing the
functionality dependent upon the
platform/hardware provided
functionality. If the differences only
affect non-cPP-specified
functionality, the variations may
still be considered equivalent. For
each difference the evaluator must
provide an explanation of why the
difference does or does not affect
cPP-specified functionality.

Differences in TOE
Software Binaries

Identical
If the model binaries are identical,
the model variations shall be
considered equivalent.

cPP_ND_v4.0-SD, 25-NOV-2025 159

Factor
Same/Not
Same Evaluator Guidance

 Different

If there are differences between
model software binaries, a
determination must be made if the
differences affect cPP-specified
security functionality. If cPP-
specified functionality is affected,
the models are not considered
equivalent and must be tested
separately. The evaluator has the
option of only retesting the
functionality that was affected by
the software differences. If the
differences only affect non-PP
specified functionality, the models
may still be considered equivalent.
For each difference the evaluator
must provide an explanation of why
the difference does or does not
affect cPP specified functionality.

Differences in
Libraries Used to
Provide TOE
Functionality

Same

If there are no differences between
the libraries used in various TOE
models, the model variations shall
be considered equivalent.

 Different

If the separate libraries are used
between model variations, a
determination of whether the
functionality provided by the
library affects cPP-specified
functionality must be made. If cPP-
specified functionality is affected,
the models are not considered

cPP_ND_v4.0-SD, 25-NOV-2025 160

Factor
Same/Not
Same Evaluator Guidance

equivalent and must be tested
separately. The evaluator has the
option of only retesting the
functionality that was affected by
the differences in the included
libraries. If the different libraries
only affect non-PP specified
functionality, the models may still
be considered equivalent. For each
different library, the evaluator must
provide an explanation of why the
different libraries do or do not
affect cPP specified functionality.

TOE Management
Interface Differences

Consistent

If there are no differences in the
management interfaces between
various TOE models, the model
variations shall be considered
equivalent.

 Differences

If the product provides separate
interfaces based on the model
variation, a determination must be
made of whether cPP-specified
functionality can be configured by
the different interfaces. If the
interface differences affect cPP-
specified functionality, the
variations are not considered
equivalent and must be separately
tested. The evaluator has the option
of only retesting the functionality
that can be configured by the

cPP_ND_v4.0-SD, 25-NOV-2025 161

Factor
Same/Not
Same Evaluator Guidance

different interfaces (and the
configuration of said functionality).
If the different management
interfaces only affect non-PP
specified functionality, the models
may still be considered equivalent.
For each management interface
difference, the evaluator must
provide an explanation of why the
different management interfaces do
or do not affect cPP specified
functionality.

TOE Functional
Differences

Identical

If the functionality provided by
different TOE model variation is
identical, the models variations
shall be considered equivalent.

 Different

If the functionality provided by
different TOE model variations
differ, a determination must be
made if the functional differences
affect cPP-specified functionality. If
cPP-specific functionality differs
between models, the models are not
considered equivalent and must be
tested separately. In these cases, the
evaluator has the option of only
retesting the functionality that
differs model-to-model. If the
functional differences only affect
non-cPP specified functionality, the
model variations may still be

cPP_ND_v4.0-SD, 25-NOV-2025 162

Factor
Same/Not
Same Evaluator Guidance

considered equivalent. For each
difference the evaluator must
provide an explanation of why the
difference does or does not affect
cPP specified functionality.

Table 3: Evaluation Equivalency Analysis

B.3. Test Presentation/Truth in Advertising

598. In addition to determining what to test, the evaluation results (and resulting
Certification Report) must identify the actual TOE and environment
combinations that have been tested. The analysis used to determine the testing
subset may be considered proprietary and will only optionally be publicly
included.

B.4. Evaluating Additional Components for a Distributed TOE

599. In the case of a distributed TOE, the Security Target will identify an evaluated
configuration that consists of a number of separate TOE components chosen by
the ST author, which collectively satisfy the requirements of the cPP. This
evaluated configuration need not be the minimum set of components that could
possibly meet the cPP (e.g., if the TOE is intended for large enterprise
deployments then the evaluated configuration might include some redundancy
in components in order to support expected connectivity and loads), but
because this is the main configuration referred to in the ST and the evaluation, it
is treated in this section as the minimum configuration of interest and is
referred to here as the ‘minimum configuration’ as well as the ‘evaluated
configuration’.

600. In addition to the minimum configuration, the ST may also identify (at the
author’s discretion, and subject to verification as described in this section)
which TOE components can have instances added to an operational
configuration without affecting the validity of the CC certification. The TOE
description in the ST may include constraints on how such components are
added, including required and/or prohibited configurations of the components.

cPP_ND_v4.0-SD, 25-NOV-2025 163

601. Extra instances of a TOE component must have the same hardware and
software as the original component included in the evaluated configuration.

602. It is noted that undesirable configurations may be possible in the operational
deployment of a TOE – such as allowing a TOE component to be managed from
separate and potentially conflicting administration domains. However, the
definition of ‘undesirable’ and of the risks involved in such cases will be specific
to each operational environment and is therefore not treated as part of the
evaluation. Correct and appropriate configuration of this sort remains a matter
for expert network planning and design in the operational environment.

B.4.1. Evaluator Actions for Assessing the ST

B.4.1.1. TSS

603. The evaluator shall examine the TSS to confirm it identifies any
extra/additional instances of specific TOE components allowed in the ST and
what effects will occur when extra instances of distributed TOE components are
added. The information in the TSS shall allow the evaluator to understand how a
system with one specific TOE component behaves in comparison to a system
with multiple instances of that same TOE component. The TSS also shall
describe how the additional TOE component instances maintain the SFRs to
determine it is consistent with the role the singular TOE component plays in the
evaluated configuration, and that the additional TOE components cannot be
used in a way that the security functionality would be corrupted or bypassed. In
general, any additional TOE component must not have a negative impact on
other already-present components that are already part of the TOE.

B.4.2. Evaluator Actions for Assessing the Guidance Documentation

B.4.2.1. Guidance Documentation

604. The evaluator shall examine the description of the extra instances of TOE
components in the guidance documentation to confirm that they are consistent
with those identified as allowed in the ST. This includes confirmation that the
result of applying the guidance documentation to configure the extra
components will leave the TOE in a state such that the claims for SFR support in
each component are as described in the ST and therefore that all SFRs continue
to be met when the extra components are present.

605. The evaluator shall examine the secure communications described for the
extra components to confirm that they are the same as described for the
components in the minimum configuration (additional connections between
allowed extra components and the components in the minimum configuration
are allowed of course).

cPP_ND_v4.0-SD, 25-NOV-2025 164

B.4.3. Evaluator Actions for Testing the TOE

B.4.3.1. Tests

606. The evaluator shall test the TOE in the minimum configuration as defined in
the ST (and the guidance documentation).

607. If the description of the use of extra components in the ST and guidance
documentation identifies any difference in the SFRs allocated to a component,
or the scope of the SFRs involved (e.g., if different selections apply to different
instances of the component) then the evaluator shall test these additional SFR
cases that were not included in the minimum configuration.

608. In addition, the evaluator shall test the following aspects for each extra
component that is identified as allowed in the distributed TOE:

o Communications: the evaluator shall follow the guidance
documentation to confirm, by testing, that any additional connections
introduced with the extra component(s) and not present in the
minimum configuration are consistent with the requirements stated
in the ST (e.g., with regard to protocols and ciphersuites used). An
example of such an additional connection would be if a single instance
of the component is present in the minimum configuration and adding
a duplicate component then introduces an extra communication
between the two instances. Another example might be if the use of the
additional components necessitated the use of a connection to an
external authentication server instead of using locally stored
credentials.

o Audit: the evaluator shall confirm that the audit records from
different instances of a component can be distinguished so that it is
clear which instance generated the record.

o Management: if the extra component manages other components in
the distributed TOE then the evaluator shall follow the guidance
documentation to confirm that management via the extra component
uses the same roles and role holders for administrators as for the
component in the minimum configuration.

1. In general, a cPP may reference one or more SDs as sources for the Evaluation Activities
for different sets of SFRs.
2. Where keys are stored encrypted or wrapped under another key, this may need to be
explained in order to allow the evaluator to confirm the consistency of the description of
keys with the TOE functions.
3. Where TRIM is used then the TSS and/or guidance documentation is/are also expected to
describe how the keys are stored such that they are not inaccessible to TRIM, (e.g., they

cPP_ND_v4.0-SD, 25-NOV-2025 165

would need not to be contained in a file of size less than 982 bytes which would be
completely contained in the master file table).
4. The intention here is to cover all different software sections involved. For example, a
single software image may be installed on different TOE components, but with different
sections of the image executed according to the hardware platform or communications
stack. In such as case tests should be carried out for each different software section.
5. The intent of the phrasing “what stops…” as opposed to “what secures…” is for the
evaluator to pursue the answer to its lowest level of dependency, i.e., a level at which the
security can clearly be seen to depend on things that are under appropriate control. For
example, a channel may be protected by a public key that is provided to the relying party
in a self-signed certificate. This enables cryptographic mechanisms to be applied to
provide authentication (and therefore invites an answer that “the check on the public key
certificate secures…”), but does not ultimately stop an attacker from apparently
authenticating because the attacker can produce their own self-signed certificate. The
question “what stops an unauthorised component from successfully communicating…”
focuses attention on what an attacker needs to do, and therefore pushes the answer down
to the level of whether a self-signed certificate could be produced by an attacker.
Similarly, a well-known key, or a key that is common to a type of device rather than an
individual device, may be used in a confidentiality mechanism but does not provide
confidentiality because an attacker can find the well-known key or obtain his own
instance of a device containing the non-unique key.
6. An ‘equivalent TOE component’ is a type of distributed TOE component that exhibits the
same security characteristics, behaviour and role in the TSF as some other TOE
component. In principle a distributed TOE could operate with only one instance of each
equivalent TOE component, although the minimum configuration of the distributed TOE
may include more than one instance (see discussion of the minimum configuration of a
distributed TOE, in Annex B.4). In practice a deployment of the TOE may include more
than one instance of some equivalent TOE components for practical reasons, such as
performance or the need to have separate instances for separate subnets or VLANs.
7. In this sub-section the term “components” refers to parts that make up the TOE. It is
therefore distinguished from the term “distributed TOE components”, which refers to the
parts of a TOE that are present in one physical part of a distributed TOE. Each distributed
TOE component will therefore generally include a number of the hardware and software
components that are referred to in this sub-section: for example, each distributed TOE
component will generally include hardware components such as processors and software
components such as an operating system and libraries.

	Supporting Document - Evaluation Activities for Network Device cPP
	Acknowledgements
	Preface
	1. Introduction
	1.1. Technology Area and Scope of Supporting Document
	1.2. Structure of the Document
	1.3. Application of this Supporting Document
	1.4. Terminology
	1.4.1. Glossary
	1.4.2. Acronyms

	2. Evaluation Activities for SFRs
	2.1. Security Audit (FAU)
	2.1.1. FAU_GEN.1 Audit data generation
	2.1.1.1. TSS
	2.1.1.2. Guidance Documentation
	2.1.1.3. Tests

	2.1.2. FAU_GEN.2 User identity association
	2.1.2.1. TSS and Guidance Documentation
	2.1.2.2. Tests

	2.1.3. FAU_STG_EXT.1 Protected audit event storage
	2.1.3.1. TSS
	2.1.3.2. Guidance Documentation
	2.1.3.3. Tests

	2.2. Cryptographic Support (FCS)
	2.2.1. FCS_CKM.1/AKG Cryptographic Key Generation – Asymmetric Key
	2.2.1.1. TSS
	2.2.1.2. Guidance Documentation
	2.2.1.3. Tests

	2.2.2. FCS_CKM.6 Timing and Event of Cryptographic Key Destruction
	2.2.2.1. TSS
	2.2.2.2. Guidance Documentation
	2.2.2.3. Tests

	2.2.3. FCS_CKM_EXT.7 Cryptographic Key Agreement
	2.2.3.1. TSS
	2.2.3.2. Guidance Documentation
	2.2.3.3. Tests

	2.2.4. FCS_COP.1/DataEncryption Cryptographic Operation (AES Data Encryption/Decryption)
	2.2.4.1. TSS
	2.2.4.2. Guidance Documentation
	2.2.4.3. Tests

	2.2.5. FCS_COP.1/SigGen Cryptographic Operation - Signature Generation
	2.2.5.1. TSS
	2.2.5.2. Guidance Documentation
	2.2.5.3. Tests

	2.2.6. FCS_COP.1/SigVer Cryptographic Operation - Signature Verification
	2.2.6.1. TSS
	2.2.6.2. Guidance Documentation
	2.2.6.3. Tests

	2.2.7. FCS_COP.1/Hash Cryptographic Operation - Hashing
	2.2.7.1. TSS
	2.2.7.2. Guidance Documentation
	2.2.7.3. Tests

	2.2.8. FCS_COP.1/KeyedHash Cryptographic Operation - Keyed Hash
	2.2.8.1. TSS
	2.2.8.2. Guidance Documentation
	2.2.8.3. Tests

	2.2.9. FCS_RBG.1 Random Bit Generation (RBG)
	2.2.9.1. TSS
	2.2.9.2. Guidance Documentation
	2.2.9.3. Tests

	2.3. Identification and Authentication (FIA)
	2.3.1. FIA_UIA_EXT.1 User Identification and Authentication
	2.3.1.1. TSS
	2.3.1.2. Guidance Documentation
	2.3.1.3. Tests

	2.4. Security management (FMT)
	2.4.1. General Requirements for Distributed TOEs
	2.4.1.1. TSS
	2.4.1.2. Guidance Documentation
	2.4.1.3. Tests

	2.4.2. FMT_MOF.1/ManualUpdate Management of security functions behaviour
	2.4.2.1. TSS
	2.4.2.2. Guidance Documentation
	2.4.2.3. Tests

	2.4.3. FMT_MTD.1/CoreData Management of TSF Data
	2.4.3.1. TSS
	2.4.3.2. Guidance Documentation
	2.4.3.3. Tests

	2.4.4. FMT_SMF.1 Specification of Management Functions
	2.4.4.1. TSS (containing also requirements on Guidance Documentation and Tests)
	2.4.4.2. Guidance Documentation
	2.4.4.3. Tests

	2.4.5. FMT_SMR.2 Restrictions on Security Roles
	2.4.5.1. TSS
	2.4.5.2. Guidance Documentation
	2.4.5.3. Tests

	2.5. Protection of the TSF (FPT)
	2.5.1. FPT_SKP_EXT.1 Protection of TSF Data (for Reading of All Symmetric Keys)
	2.5.1.1. TSS
	2.5.1.2. Guidance Documentation
	2.5.1.3. Tests

	2.5.2. FPT_STM_EXT.1 Reliable Time Stamps
	2.5.2.1. TSS
	2.5.2.2. Guidance Documentation
	2.5.2.3. Tests

	2.5.3. FPT_TST_EXT.1 TSF Testing
	2.5.3.1. TSS
	2.5.3.2. Guidance Documentation
	2.5.3.3. Tests

	2.5.4. FPT_TUD_EXT.1 Trusted Update
	2.5.4.1. TSS
	2.5.4.2. Guidance Documentation
	2.5.4.3. Tests

	2.6. TOE Access (FTA)
	2.6.1. FTA_SSL.3 TSF-Initiated Termination
	2.6.1.1. TSS
	2.6.1.2. Guidance Documentation
	2.6.1.3. Tests

	2.6.2. FTA_SSL.4 User-Initiated Termination
	2.6.2.1. TSS
	2.6.2.2. Guidance Documentation
	2.6.2.3. Tests

	2.6.3. FTA_TAB.1 Default TOE Access Banners
	2.6.3.1. TSS
	2.6.3.2. Guidance Documentation
	2.6.3.3. Tests

	2.7. Trusted path/channels (FTP)
	2.7.1. FTP_ITC.1 Inter-TSF Trusted Channel
	2.7.1.1. TSS
	2.7.1.2. Guidance Documentation
	2.7.1.3. Tests

	2.7.2. FTP_TRP.1/Admin Trusted Path
	2.7.2.1. TSS
	2.7.2.2. Guidance Documentation
	2.7.2.3. Tests

	3. Evaluation Activities for Optional Requirements
	3.1. Security Audit (FAU)
	3.1.1. FAU_STG.2 Protected audit data storage
	3.1.1.1. TSS
	3.1.1.2. Guidance Documentation
	3.1.1.3. Tests

	3.1.2. FAU_STG_EXT.2 Counting Lost Audit Data
	3.1.2.1. TSS
	3.1.2.2. Guidance Documentation
	3.1.2.3. Tests

	3.1.3. FAU_STG_EXT.3 Action in Case of Possible Audit Data Loss
	3.1.3.1. TSS
	3.1.3.2. Guidance Documentation
	3.1.3.3. Tests

	3.1.4. FCS_CKM.2 Cryptographic Key Distribution
	3.1.4.1. TSS
	3.1.4.2. Guidance Documentation
	3.1.4.3. Tests

	3.2. Protection of the TSF (FPT)
	3.2.1. FPT_ITT.1 Basic Internal TSF Data Transfer Protection
	3.2.1.1. TSS
	3.2.1.2. Guidance Documentation
	3.2.1.3. Tests

	3.3. Trusted Path/Channels (FTP)
	3.3.1. FTP_TRP.1/Join Trusted Path
	3.3.1.1. TSS
	3.3.1.2. Guidance Documentation
	3.3.1.3. Tests

	3.4. Communication (FCO)
	3.4.1. FCO_CPC_EXT.1 Component Registration Channel Definition
	3.4.1.1. TSS
	3.4.1.2. Guidance Documentation
	3.4.1.3. Tests

	4. Evaluation Activities for Selection-Based Requirements
	4.1. Security Audit (FAU)
	4.1.1. FAU_SAR.1 Audit Review
	4.1.1.1. TSS
	4.1.1.2. Guidance Documentation
	4.1.1.3. Tests

	4.1.2. FAU_GEN_EXT.1 Security Audit Data Generation for Distributed TOE Components
	4.1.3. FAU_STG_EXT.4 Protected Local Audit Event Storage for Distributed TOEs and FAU_STG_EXT.5 Protected Remote Audit Event Storage for Distributed TOEs
	4.1.3.1. TSS
	4.1.3.2. Guidance Documentation
	4.1.3.3. Tests

	4.2. Cryptographic Support (FCS)
	4.2.1. FCS_COP.1/AEAD Cryptographic Operation – Authenticated Encryption with Associated Data
	4.2.1.1. TSS
	4.2.1.2. Guidance Documentation
	4.2.1.3. Tests

	4.2.2. FCS_COP.1/KeyEncap Cryptographic Operation - Key Encapsulation
	4.2.2.1. TSS
	4.2.2.2. Guidance Documentation
	4.2.2.3. Tests

	4.2.3. FCS_COP.1/KeyWrap Cryptographic Operation - Key Wrapping
	4.2.3.1. TSS
	4.2.3.2. Guidance Documentation
	4.2.3.3. Tests

	4.2.4. FCS_COP.1/SKC Cryptographic Operation - Symmetric Key Cryptography
	4.2.4.1. TSS
	4.2.4.2. Guidance Documentation
	4.2.4.3. Tests

	4.2.5. FCS_COP.1/CMAC Cryptographic Operation - CMAC
	4.2.5.1. TSS
	4.2.5.2. Guidance Documentation
	4.2.5.3. Tests

	4.2.6. FCS_RBG.2 Random Bit Generation (External Seeding - VS platform)
	4.2.6.1. TSS
	4.2.6.2. Guidance Documentation
	4.2.6.3. Tests

	4.2.7. FCS_RBG.3 Random Bit Generation (Internal Seeding - Single Source)
	4.2.7.1. TSS
	4.2.7.2. Guidance Documentation
	4.2.7.3. Tests

	4.2.8. FCS_RBG.4 Random Bit Generation (Internal Seeding - Multiple Sources)
	4.2.8.1. TSS
	4.2.8.2. Guidance Documentation
	4.2.8.3. Tests

	4.2.9. FCS_RBG.5 Random Bit Generation (Combining Entropy Sources)
	4.2.9.1. TSS
	4.2.9.2. Guidance Documentation
	4.2.9.3. Tests

	4.2.10. FCS_COP.1/XOF Extendable-Output Function
	4.2.10.1. TSS
	4.2.10.2. Guidance Documentation
	4.2.10.3. Tests

	4.2.11. FCS_IPSEC_EXT.1 IPsec Protocol
	4.2.11.1. TSS
	4.2.11.2. Guidance Documentation
	4.2.11.3. Tests

	4.2.12. FCS_NTP_EXT.1 NTP Protocol
	4.2.12.1. TSS
	4.2.12.2. Guidance Documentation
	4.2.12.3. Tests

	4.3. Identification and Authentication (FIA)
	4.3.1. FIA_AFL.1 Authentication Failure Management
	4.3.1.1. TSS
	4.3.1.2. Guidance Documentation
	4.3.1.3. Tests

	4.3.2. FIA_UAU.7 Protected Authentication Feedback
	4.3.2.1. TSS
	4.3.2.2. Guidance Documentation
	4.3.2.3. Tests

	4.3.3. FIA_PMG_EXT.1 Password Management
	4.3.3.1. TSS
	4.3.3.2. Guidance Documentation
	4.3.3.3. Tests

	4.3.4. FIA_PSK_EXT.1 Pre-Shared Key Composition
	4.3.4.1. TSS
	4.3.4.2. Guidance Documentation
	4.3.4.3. Tests

	4.4. Protection of the TSF (FPT)
	4.4.1. FPT_APW_EXT.1 Protection of Administrator Passwords
	4.4.1.1. TSS
	4.4.1.2. Guidance Documentation
	4.4.1.3. Tests

	4.4.2. FPT_TUD_EXT.2 Trusted Update Based on Certificates
	4.4.2.1. TSS
	4.4.2.2. Guidance Documentation
	4.4.2.3. Tests

	4.5. Security management (FMT)
	4.5.1. FMT_MOF.1/Services Management of Security Functions Behaviour
	4.5.1.1. TSS
	4.5.1.2. Guidance Documentation
	4.5.1.3. Tests

	4.5.2. FMT_MOF.1/AutoUpdate Management of Security Functions Behaviour
	4.5.2.1. TSS
	4.5.2.2. Guidance Documentation
	4.5.2.3. Tests

	4.5.3. FMT_MOF.1/Functions Management of Security Functions Behaviour
	4.5.3.1. TSS
	4.5.3.2. Guidance Documentation
	4.5.3.3. Tests

	4.5.4. FMT_MTD.1/CryptoKeys Management of TSF Data
	4.5.4.1. TSS
	4.5.4.2. Guidance Documentation
	4.5.4.3. Tests

	4.6. TOE Access (FTA)
	4.6.1. FTA_SSL_EXT.1 TSF-initiated Session Locking
	4.6.1.1. TSS
	4.6.1.2. Guidance Documentation
	4.6.1.3. Tests

	5. Evaluation Activities for SARs
	5.1. ASE: Security Target Evaluation
	5.1.1. General Evaluation Activities for TOE Summary Specification (ASE_TSS.1) for All TOEs
	5.1.2. Additional Evaluation Activities for TOE Summary Specification (ASE_TSS.1) for Distributed TOEs

	5.2. ADV: Development
	5.2.1. Basic Functional Specification (ADV_FSP.1)
	5.2.1.1. Evaluation Activity
	5.2.1.2. Evaluation Activity
	5.2.1.3. Evaluation Activity

	5.3. AGD: Guidance Documents
	5.3.1. Operational User Guidance (AGD_OPE.1)
	5.3.1.1. Evaluation Activity
	5.3.1.2. Evaluation Activity
	5.3.1.3. Evaluation Activity
	5.3.1.4. Evaluation Activity
	5.3.1.5. Evaluation Activity

	5.3.2. Preparative Procedures (AGD_PRE.1)
	5.3.2.1. Evaluation Activity:
	5.3.2.2. Evaluation Activity
	5.3.2.3. Evaluation Activity
	5.3.2.4. Evaluation Activity
	5.3.2.5. Evaluation Activity

	5.4. ALC: Life-cycle Support
	5.4.1. Labelling of the TOE (ALC_CMC.1)
	5.4.2. TOE CM Coverage (ALC_CMS.1)
	5.4.3. Basic Flaw Remediation (ALC_FLR.1) (optional)
	5.4.4. Flaw Reporting Procedures (ALC_FLR.2) (optional)
	5.4.5. Systematic Flaw Remediation (ALC_FLR.3) (optional)

	5.5. ATE: Tests
	5.5.1. Independent Testing – Conformance (ATE_IND.1)

	5.6. AVA: Vulnerability Assessment
	5.6.1. Vulnerability Survey (AVA_VAN.1)
	5.6.1.1. Evaluation Activity (Documentation):
	5.6.1.2. Evaluation Activity:

	6. Required Supplementary Information
	7. References
	Annex A: Vulnerability Analysis
	A.1. Sources of Vulnerability Information
	A.1.1. Type 1 Hypotheses – Public-Vulnerability-Based
	A.1.2. Type 2 Hypotheses – iTC-Sourced
	A.1.3. Type 3 Hypotheses – Evaluation-Team-Generated
	A.1.4. Type 4 Hypotheses – Tool-Generated

	A.2. Process for Evaluator Vulnerability Analysis
	A.3. Reporting
	A.4. Public Vulnerability Sources

	Annex B: Network Device Equivalency Considerations
	B.1. Introduction
	B.2. Evaluator Guidance for Determining Equivalence
	B.2.1. Strategy
	B.2.2. Guidance for Network Devices

	B.3. Test Presentation/Truth in Advertising
	B.4. Evaluating Additional Components for a Distributed TOE
	B.4.1. Evaluator Actions for Assessing the ST
	B.4.1.1. TSS

	B.4.2. Evaluator Actions for Assessing the Guidance Documentation
	B.4.2.1. Guidance Documentation

	B.4.3. Evaluator Actions for Testing the TOE
	B.4.3.1. Tests

